構成的頻度分析の発展<br>Advances in Configural Frequency Analysis (Methodology in the Social Sciences)

個数:

構成的頻度分析の発展
Advances in Configural Frequency Analysis (Methodology in the Social Sciences)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 306 p.
  • 言語 ENG
  • 商品コード 9781606237199
  • DDC分類 150.1519535

基本説明

Shows how to use the latest configural frequency analysis (CFA) techniques to analyze categorical data.

Full Description

Using real-world data examples, this authoritative book shows how to use the latest configural frequency analysis (CFA) techniques to analyze categorical data. Some of the techniques are presented here for the first time. In contrast to methods that focus on relationships among variables, such as log-linear modeling, CFA allows researchers to evaluate differences and change at the level of individual cells in a table. Illustrated are ways to identify and test for cell configurations that are either consistent with or contrary to hypothesized patterns (the types and antitypes of CFA); control for potential covariates that might influence observed results; develop innovative prediction models; address questions of moderation and mediation; and analyze intensive longitudinal data. The book also describes free software applications for executing CFA.

Contents

_x000D_ _x000D_

1. Introduction

_x000D_

1.1 Questions That CFA Can Answer

_x000D_

1.2 The Five Steps of CFA

_x000D_

1.3 Introduction to CFA: An Overview

_x000D_

1.4 Chapter Summary

_x000D_

2. Configural Analysis of Rater Agreement

_x000D_

2.1 Rater Agreement CFA

_x000D_

2.2 Data Examples

_x000D_

2.3 Chapter Summary

_x000D_

3. Structural Zeros in CFA

_x000D_

3.1 Blanking Out Structural Zeros

_x000D_

3.2 Structural Zeros by Design

_x000D_

3.2.1 Polynomials and the Method of Differences

_x000D_

3.2.2 Identifying Zeros That Are Structural by Design

_x000D_

3.3 Chapter Summary

_x000D_

4. Covariates in CFA

_x000D_

4.1 CFA and Covariates

_x000D_

4.2 Chapter Summary

_x000D_

5. Configural Prediction Models

_x000D_

5.1 Logistic Regression and Prediction CFA

_x000D_

5.1.1 Logistic Regression

_x000D_

5.1.2 Prediction CFA

_x000D_

5.1.3 Comparing Logistic Regression and P-CFA Models

_x000D_

5.2 Predicting an End Point

_x000D_

5.3 Predicting a Trajectory

_x000D_

5.4 Graphical Presentation of Results of P-CFA Models

_x000D_

5.5 Chapter Summary

_x000D_

6. Configural Mediator Models

_x000D_

6.1 Logistic Regression plus Mediation

_x000D_

6.2 CFA-Based Mediation Analysis

_x000D_

6.3 Configural Chain Models

_x000D_

6.4 Chapter Summary

_x000D_

7. Auto-Association CFA

_x000D_

7.1 A-CFA without Covariates

_x000D_

7.2 A-CFA with Covariates

_x000D_

7.2.1 A-CFA with Covariates I: Types and Antitypes Reflect Any of the Possible Relationships between Two or More Series of Measures

_x000D_

7.2.2 A-CFA with Covariates II: Types and Antitypes Reflect Only Relationships between the Series of Measures and the Covariate

_x000D_

7.3 Chapter Summary

_x000D_

8. Configural Moderator Models

_x000D_

8.1 Configural Moderator Analysis: Base Models with and without Moderator

_x000D_

8.2 Longitudinal Configural Moderator Analysis under Consideration of Auto-Associations

_x000D_

8.3 Configural Moderator Analysis as n-Group Comparison

_x000D_

8.4 Moderated Mediation

_x000D_

8.5 Graphical Representation of Configural Moderator Results

_x000D_

8.6 Chapter Summary

_x000D_

9. The Validity of CFA Types and Antitypes

_x000D_

9.1 Validity in CFA

_x000D_

9.2 Chapter Summary

_x000D_

10. Functional CFA

_x000D_

10.1 F-CFA I: An Alternative Approach to Exploratory CFA (Sequential Identification of Types and Antitypes)

_x000D_

10.1.1 Kieser and Victor's Alternative, Sequential CFA: Focus on Model Fit

_x000D_

10.1.2 von Eye and Mair's Sequential CFA: Focus on Residuals

_x000D_

10.2 Special Case: One Dichotomous Variable

_x000D_

10.3 F-CFA II: Explaining Types and Antitypes

_x000D_

10.3.1 Explaining Types and Antitypes: The Ascending, Inclusive Strategy

_x000D_

10.3.2 Explaining Types and Antitypes: The Descending, Exclusive Strategy

_x000D_

10.4 Chapter Summary

_x000D_

11. CFA of Intensive Categorical Longitudinal Data

_x000D_

11.1 C

最近チェックした商品