Faster Algorithms via Approximation Theory (Foundations and Trends® in Theoretical Computer Science)

個数:

Faster Algorithms via Approximation Theory (Foundations and Trends® in Theoretical Computer Science)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 108 p.
  • 言語 ENG
  • 商品コード 9781601988201

Full Description

Faster Algorithms via Approximation Theory illustrates how classical and modern techniques from approximation theory play a crucial role in obtaining results that are relevant to the emerging theory of fast algorithms. The key lies in the fact that such results imply faster ways to approximate primitives such as products of matrix functions with vectors and, to compute matrix eigenvalues and eigenvectors, which are fundamental to many spectral algorithms.

The first half of the book is devoted to the ideas and results from approximation theory that are central, elegant, and may have wider applicability in theoretical computer science. These include not only techniques relating to polynomial approximations but also those relating to approximations by rational functions and beyond. The remaining half illustrates a variety of ways that these results can be used to design fast algorithms.

Faster Algorithms via Approximation Theory is self-contained and should be of interest to researchers and students in theoretical computer science, numerical linear algebra, and related areas.

Contents

Introduction. I APPROXIMATION THEORY: 1. Uniform Approximations 2. Chebyshev Polynomials 3. Approximating Monomials 4. Approximating the Exponential 5. Lower Bounds for Polynomial Approximations 6. Approximating the Exponential using Rational Functions 7. Rational Approximations to the Exponential with Negative Poles II APPLICATIONS: 8. Simulating Random Walks 9. Solving Linear Equations via the Conjugate Gradient Method 10. Computing Eigenvalues via the Lanczos Method 11. Computing the Matrix Exponential 12. Matrix Inversion via Exponentiation. References.

最近チェックした商品