Randomized Algorithms for Matrices and Data (Foundations and Trends® in Machine Learning)

個数:
  • ポイントキャンペーン

Randomized Algorithms for Matrices and Data (Foundations and Trends® in Machine Learning)

  • ウェブストア価格 ¥15,351(本体¥13,956)
  • now publishers Inc(2011/11発売)
  • 外貨定価 US$ 80.00
  • ゴールデンウィーク ポイント2倍キャンペーン対象商品(5/6まで)
  • ポイント 278pt
  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 114 p.
  • 言語 ENG
  • 商品コード 9781601985064
  • DDC分類 003.8

Full Description

Randomized algorithms for very large matrix problems have received a great deal of attention in recent years. Much of this work was motivated by problems in large-scale data analysis, largely since matrices are popular structures with which to model data drawn from a wide range of application domains, and the success of this line of work opens the possibility of performing matrix-based computations with truly massive data sets.

Originating within theoretical computer science, this work was subsequently extended and applied in important ways by researchers from numerical linear algebra, statistics, applied mathematics, data analysis, and machine learning, as well as domain scientists. It provides a detailed overview, appropriate for both students and researchers from all of these areas, of recent work on the theory of randomized matrix algorithms as well as the application of those ideas to the solution of practical problems in large-scale data analysis.

By focusing on ubiquitous and fundamental problems such as least-squares approximation and low-rank matrix approximation that have been at the center of recent developments, an emphasis is placed on a few simple core ideas that underlie not only recent theoretical advances but also the usefulness of these algorithmic tools in large-scale data applications.

Contents

1: Introduction 2: Matrices in large-scale scientific data analysis 3: Randomization applied to matrix problems 4: Randomized algorithms for least-squares approximation 5: Randomized algorithms for low-rank matrix approximation 6: Empirical observations 7: A few general thoughts, and a few lessons learned 8: Conclusion. Acknowledgements. References

最近チェックした商品