Dimension Reduction : A Guided Tour (Foundations and Trends® in Machine Learning)

個数:
  • ポイントキャンペーン

Dimension Reduction : A Guided Tour (Foundations and Trends® in Machine Learning)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 106 p.
  • 言語 ENG
  • 商品コード 9781601983787
  • DDC分類 006.32

Full Description

Provides a tutorial overview of several foundational methods for dimension reduction. The authors divide the methods into projective methods and methods that model the manifold on which the data lies. For projective methods, they review projection pursuit, principal component analysis (PCA), kernel PCA, probabilistic PCA, canonical correlation analysis (CCA), kernel CCA, Fisher discriminant analysis, oriented PCA, and several techniques for sufficient dimension reduction.

For the manifold methods, the book reviews multidimensional scaling (MDS), landmark MDS, Isomap, locally linear embedding, Laplacian eigenmaps, and spectral clustering. Although the review focuses on foundations, the author also provide pointers to some more modern techniques, and describe the correlation dimension as one method for estimating the intrinsic dimension, and point out that the notion of dimension can be a scale-dependent quantity.

The Nyström method, which links several of the manifold algorithms, is also reviewed. We use a publicly available dataset to illustrate some of the methods. The goal is to provide a self-contained overview of key concepts underlying many of these algorithms, and to give pointers for further reading.

Contents

1: Introduction 2: Estimating the Dimension 3: Projective Methods 4: Manifold Modeling 5: Pointers and Conclusions. Acknowledgements. References. A Appendix: The Nearest Positive Semidefinite Matrix

最近チェックした商品