Graphical Models, Exponential Families, and Variational Inference (Foundations and Trends® in Machine Learning)

個数:

Graphical Models, Exponential Families, and Variational Inference (Foundations and Trends® in Machine Learning)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 324 p.
  • 言語 ENG
  • 商品コード 9781601981844
  • DDC分類 519.538

Full Description

The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning.

Many problems that arise in specific instances-including the key problems of computing marginals and modes of probability distributions-are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, this book develops general variational representations of the problems of computing likelihoods, marginal probabilities and most probable configurations. It describes how a wide variety of algorithms- among them sum-product, cluster variational methods, expectation-propagation, mean field methods, and max-product-can all be understood in terms of exact or approximate forms of these variational representations.

The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in large-scale statistical models.

Contents

1: Introduction 2: Background 3: Graphical models as exponential families 4: Sum product, Bethe-Kikuchi, and expectation-propagation 5: Mean field methods 6: Variational methods in parameter estimation 7: Convex relaxations and upper bounds 8: Max-product and LP relaxations 9: Moment matrices and conic relaxations 10: Discussion. A: Background Material B: Proofs for exponential families and duality C: Variational principles for multivariate Gaussians D: Clustering and augmented hypergraphs E: Miscellaneous results References

最近チェックした商品