欠損データ入門<br>Missing Data : A Gentle Introduction (Methodology in the Social Sciences)

個数:

欠損データ入門
Missing Data : A Gentle Introduction (Methodology in the Social Sciences)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 251 p.
  • 言語 ENG
  • 商品コード 9781593853938
  • DDC分類 300.72

基本説明

Provides a methodology for control and prevention of missing data.

Full Description

While most books on missing data focus on applying sophisticated statistical techniques to deal with the problem after it has occurred, this volume provides a methodology for the control and prevention of missing data. In clear, nontechnical language, the authors help the reader understand the different types of missing data and their implications for the reliability, validity, and generalizability of a study's conclusions. They provide practical recommendations for designing studies that decrease the likelihood of missing data, and for addressing this important issue when reporting study results. When statistical remedies are needed--such as deletion procedures, augmentation methods, and single imputation and multiple imputation procedures--the book also explains how to make sound decisions about their use. Patrick E. McKnight's website offers a periodically updated annotated bibliography on missing data and links to other Web resources that address missing data.

Contents

1. A Gentle Introduction to Missing Data
1.1. The Concept of Missing Data
1.2. The Prevalence of Missing Data
1.3. Why Data Might Be Missing
1.4. The Impact of Missing Data
1.5. What's Missing in the Missing Data Literature?
1.6. A Cost-Benefit Approach to Missing Data
1.7. Missing Data--Not Just for Statisticians Anymore
2. Consequences of Missing Data
2.1. Three General Consequences of Missing Data
2.2. Consequences of Missing Data on Construct Validity
2.3. Consequences of Missing Data on Internal Validity
2.4. Consequences on Causal Generalization
2.5. Summary
3. Classifying Missing Data
3.1. The Silence That Betokens
3.2. The Current Classification System: Mechanisms of Missing Data
3.3. Expanding the Classification System
3.4. Summary
4. Preventing Missing Data by Design
4.1. Overall Study Design
4.2. Characteristics of the Target Population and the Sample
4.3. Data Collection and Measurement
4.4. Treatment Implementation
4.5. Data Entry Process
4.6. Summary
5. Diagnostic Procedures
5.1. Traditional Diagnostics
5.2. Dummy Coding Missing Data
5.3. Numerical Diagnostic Procedures
5.4. Graphical Diagnostic Procedures
5.5. Summary
6. The Selection of Data Analytic Procedures
6.1. Preliminary Steps
6.2. Decision Making
6.3. Summary
7. Data Deletion Methods for Handling Missing Data
7.1. Data Sets
7.2. Complete Case Method
7.3. Available Case Method
7.4. Available Item Method
7.5. Individual Growth Curve Analysis
7.6. Multisample Analyses
7.7. Summary
8. Data Augmentation Procedures8.1. Model-Based Procedures
8.2. Markov Chain Monte Carlo
8.3. Adjustment Methods
8.4. Summary
9. Single Imputation Procedures
9.1. Constant Replacement Methods
9.2. Random Value Imputation
9.3. Nonrandom Value Imputation: Single Condition
9.4. Nonrandom Value Imputation: Multiple Conditions
9.5. Summary
10. Multiple Imputation
10.1. The MI Process
10.2. Summary
11. Reporting Missing Data and Results
11.1. APA Task Force Recommendations
11.2. Missing Data and Study Stages
11.3. TFSI Recommendations and Missing Data
11.4. Reporting Format
11.5. Summary
12. Epilogue

最近チェックした商品