微分方程式:逆問題と順問題<br>Differential Equations : Inverse and Direct Problems (Lecture Notes in Pure and Applied Mathematics)

個数:

微分方程式:逆問題と順問題
Differential Equations : Inverse and Direct Problems (Lecture Notes in Pure and Applied Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 294 p.
  • 言語 ENG
  • 商品コード 9781584886044
  • DDC分類 515.35

基本説明

Covers diffrential equations in Banach spaces, integro-differential equations, models in superconductivity, hyperbolic partial diffrential equations, physical interpretation of general Wentzell boundary conditions, and more.

Full Description

With contributions from some of the leading authorities in the field, the work in Differential Equations: Inverse and Direct Problems stimulates the preparation of new research results and offers exciting possibilities not only in the future of mathematics but also in physics, engineering, superconductivity in special materials, and other scientific fields.

Exploring the hypotheses and numerical approaches that relate to pure and applied mathematics, this collection of research papers and surveys extends the theories and methods of differential equations. The book begins with discussions on Banach spaces, linear and nonlinear theory of semigroups, integrodifferential equations, the physical interpretation of general Wentzell boundary conditions, and unconditional martingale difference (UMD) spaces. It then proceeds to deal with models in superconductivity, hyperbolic partial differential equations (PDEs), blowup of solutions, reaction-diffusion equation with memory, and Navier-Stokes equations. The volume concludes with analyses on Fourier-Laplace multipliers, gradient estimates for Dirichlet parabolic problems, a nonlinear system of PDEs, and the complex Ginzburg-Landau equation.

By combining direct and inverse problems into one book, this compilation is a useful reference for those working in the world of pure or applied mathematics.

Contents

Degenerate first order identification problems in Banach spaces. A non-isothermal dynamical Ginzburg-Landau model of superconductivity. Some global in time results for integrodifferential parabolic inverse problems. Fourth order ordinary differential operators with general Wentzell boundary conditions. Study of elliptic differential equations in UMD spaces. Degenerate integrodifferential equations of parabolic type. Exponential attractors for semiconductor equations. Convergence to stationary states of solutions to the semilinear equa-
tion of viscoelasticity. Asymptotic behavior of a phase field system with dynamic boundary conditions. The power potential and nonexistence of positive solutions. The Model-Problem associated to the Stefan Problem with Surface Tension: an Approach via Fourier-Laplace Multipliers. Identification problems for nonautonomous degenerate integrodifferential equations of parabolic type with Dirichlet boundary conditions. Existence results for a phase transition model based on microscopic movements. Strong L2-wellposedness in the complex Ginzburg-Landau equation.