生物学に基づくアルゴリズムハンドブック<br>Handbook of Bioinspired Algorithms and Applications

個数:

生物学に基づくアルゴリズムハンドブック
Handbook of Bioinspired Algorithms and Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 698 p.
  • 言語 ENG
  • 商品コード 9781584884750
  • DDC分類 005.1

基本説明

Explores the connection between biologically inspired (or bio-inspired) techniques and the development of solutions to problems that arise in a variety of problem domains.

Full Description

The mystique of biologically inspired (or bioinspired) paradigms is their ability to describe and solve complex relationships from intrinsically very simple initial conditions and with little or no knowledge of the search space. Edited by two prominent, well-respected researchers, the Handbook of Bioinspired Algorithms and Applications reveals the connections between bioinspired techniques and the development of solutions to problems that arise in diverse problem domains.

A repository of the theory and fundamentals as well as a manual for practical implementation, this authoritative handbook provides broad coverage in a single source along with numerous references to the available literature for more in-depth information. The book's two sections serve to balance coverage of theory and practical applications. The first section explains the fundamentals of techniques, such as evolutionary algorithms, swarm intelligence, cellular automata, and others. Detailed examples and case studies in the second section illustrate how to apply the theory in actually developing solutions to a particular problem based on a bioinspired technique.

Emphasizing the importance of understanding and harnessing the robust capabilities of bioinspired techniques for solving computationally intractable optimizations and decision-making applications, the Handbook of Bioinspired Algorithms and Applications is an absolute must-read for anyone who is serious about advancing the next generation of computing.

Contents

MODELS AND PARADIGMS. Evolutionary Algorithms. An Overview of Neural Networks Models. Ant Colony Optimization. Swarm Intelligence. Parallel Genetic Programming: Methodology, History, and Application to Real Life Problems. Parallel Cellular Algorithms and Programs. Decentralized Cellular Evolutionary Algorithms. Optimization Via Gene Expression Algorithms. Dynamic Updating DNA Computing Algorithms. A Unified View on Metaheuristics and Their Hybridization. The Foundations of Autonomic Computing. APPLICATION DOMAINS. Setting Parameter Values for Parallel Genetic Algorithms: Scheduling Tasks on a Cluster. Genetic Algorithms for Scheduling in Grid Computing Environments: A Case Study. Minimization of SADMs in Unidirectional SONET/WDM Rings Using Genetic Algorithm. Solving Optimization Problems in Wireless Networks Using Genetic Algorithms. Medical Imaging and Diagnosis Using Genetic Algorithms. Multiprocessor Scheduling and Rescheduling with Use of Cellular Automata. Cellular Automata, PDEs, and Pattern Formation. Ant Colonies and the Mesh Partitioning Problem. Simulating the Strategic Adaptation of Organizations Using OrgSwarm. BeeHive: New Ideas for Developing Routing Algorithms Inspired by Honey Bee Behavior. Swarming Agents for Decentralized Clustering in Spatial Data. Biological Inspired Based Intrusion Detection Models for Mobile Telecommunication Systems. Synthesis of Multiple-Valued Circuits by Neural Networks. On the Computing Capacity of Multiple-Valued Multiple Threshold Perceptrons. Advanced Evolutionary Algorithms for Training Neural Networks. Bio-Inspired Data Mining. A Hybrid Evolutionary Algorithm for Knowledge Discovery in Microarray Experiments. Evolutionary Approach to Electrical Engineering Design Problems. Solving the Partitioning Problem in Distributed Virtual Environment Systems Using Evolutive Algorithms. Population Learning Algorithm and Its Applications. Biology-Derived Algorithm in Engineering Optimization. Biomimetic Models for Wireless Sensor