Regression Analysis for Categorical Moderators (Methodology in the Social Sciences)

個数:
  • ポイントキャンペーン

Regression Analysis for Categorical Moderators (Methodology in the Social Sciences)

  • ウェブストア価格 ¥10,912(本体¥9,920)
  • Guilford Publications(2004/02発売)
  • 外貨定価 US$ 50.00
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 495pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 202 p.
  • 言語 ENG
  • 商品コード 9781572309692
  • DDC分類 519.536

基本説明

Provides practical guidance for using moderated multiple regression (MMR).

Full Description

Does the stability of personality vary by gender or ethnicity? Does a particular therapy work better to treat clients with one type of personality disorder than those with another? Providing a solution to thorny problems such as these, Aguinis shows readers how to better assess whether the relationship between two variables is moderated by group membership through the use of a statistical technique, moderated multiple regression (MMR). Clearly written, the book requires only basic knowledge of inferential statistics. It helps students, researchers, and practitioners determine whether a particular intervention is likely to yield dissimilar outcomes for members of various groups. Associated computer programs and data sets are available at the companion website (www.guilford.com/aguinis-materials).

Contents

1. What Is a Moderator Variable and Why Should We Care?
Why Should We Study Moderator Variables?
Distinction between Moderator and Mediator Variables
Importance of A Priori Rationale in Investigating Moderating Effects
Conclusions
2. Moderated Multiple Regression
What Is MMR?
Endorsement of MMR as an Appropriate Technique
Pervasive Use of MMR in the Social Sciences: Literature Review
Conclusions
3. Performing and Interpreting Moderated Multiple Regression Analysis Using Computer Programs
Research Scenario
Data Set
Conducting an MMR Analysis Using Computer Programs: Two Steps
Output Interpretation
Conclusions
4. Homogeneity of Error Variance Assumption
What Is the Homogeneity of Error Variance Assumption?
Two Distinct Assumptions: Homoscedasticity and Homogeneity of Error Variance
Is It a Big Deal to Violate the Assumption?
Violation of the Assumption in Published Research
How to Check If the Homogeneity Assumption Is Violated
What to Do When the Homogeneity of Error Variance Assumption Is Violated
ALTMMR: Computer Program to Check Assumption Compliance and Compute Alternative Statistics If Needed
Conclusions
5. MMR's Low-Power Problem
Statistical Inferences and Power
Controversy Over Null Hypothesis Significance Testing
Factors Affecting the Power of All Inferential Tests
Factors Affecting the Power of MMR
Effect Sizes and Power in Published Research
Implications of Small Observed Effect Sizes for Social Science Research
Conclusions
6. Light at the End of the Tunnel: How to Solve the Low-Power Problem
How to Minimize the Impact of Factors Affecting the Power of All Inferential Tests
How to Minimize the Impact of Factors Affecting the Power of MMR
Conclusions
7. Computing Statistical Power
Usefulness of Computing Statistical Power
Empirically Based Programs
Theory-Based Program
Relative Impact of the Factors Affecting Power
Conclusions
8. Complex MMR Models
MMR Analyses Including a Moderator Variable with More Than Two Levels
Linear Interactions and Non-linear Effects: Friends or Foes?
Testing and Interpreting Three-Way and Higher-Order Interaction Effects
Conclusions
9. Further Issues in the Interpretation of Moderating Effects
Is the Moderating Effect Practically Significant?
The Signed Coefficient Rule for Interpreting Moderating Effects
The Importance on Identifying Criterion and Predictor A Priori
Conclusions
10. Summary and Conclusions
Moderators and Social Science Theory and Practice
Use of Moderated Multiple Regression
Homogeneity of Error Variance Assumption
Low Statistical Power and Proposed Remedies
Complex MMR Models
Assessing Practical Significance
Conclusions
Appendix A. Computation of Bartlett's (1937) MStatistic
Appendix B. Computation of James's (1951) J Statistic
Appendix C. Computation of Alexander's (Alexander & Govern, 1994) A Statistic
Appendix D. Computation of Modified f2
Appendix E. Theory-Based Power Approximation
References
Name Index
Subject Index

最近チェックした商品