Interpreting and Comparing Effects in Logistic, Probit, and Logit Regression (Quantitative Applications in the Social Sciences)

個数:
電子版価格
¥5,723
  • 電子版あり

Interpreting and Comparing Effects in Logistic, Probit, and Logit Regression (Quantitative Applications in the Social Sciences)

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 208 p.
  • 言語 ENG
  • 商品コード 9781544364018
  • DDC分類 300.721

Full Description

Log-linear, logit and logistic regression models are the most common ways of analyzing data when (at least) the dependent variable is categorical. This volume shows how to compare coefficient estimates from regression models for categorical dependent variables in three typical research situations: (i) within one equation, (ii) between identical equations estimated in different subgroups, and (iii) between nested equations. Each of these three kinds of comparisons brings along its own particular form of comparison problems. Further, in all three areas, the precise nature of comparison problems in logistic regression depends on how the logistic regression model is looked at and how the effects of the independent variables are computed. This volume presents a practical, unified treatment of these problems, and considers the advantages and disadvantages of each approach, and when to use them, so that applied researchers can make the best choice related to their research problem. The techniques are illustrated with data from simulation experiments and from publicly available surveys. The datasets, along with Stata syntax, are available on a companion website.

Contents

Chapter 1. Introduction
Purpise
Content
Causality
Chapter 2. Regression Models for A Dichotomous Dependent Variable
Introduction
Discrete Response Model — DRM
Latent Variable Model — LVM
Inserting Mavericks, "Orthogonal" Independent Variables, Into Equations
Chapter 3. Interpreting And Comparing Effects Within One Equation
Comparing Effects Within a Single LVM Equation
Comparing Effects Within a Single DRM Equation
Causal Interpretations in LVM and DRM Logistic Regression
Chapter 4. Comparing Subgroups Or Time Points: Investigating Interaction Effects
Interaction Effects in LVM
Interaction Effects in DRM
Interaction and Causal Analysis
Chapter 5. Causal Modeling: Estimating Total, Direct, Indirect And Spurious Effects; Using Effect Coefficients From Different (Nested) Equations
Introduction
LVM
DRM
Casual Modeling
Chapter 6. Concluding Remarks; Extensions, Effect Measures And Evaluation
Polytomous Dependent Variable
How to Measure Effects in Logistic Regression
Concluding Remarks

最近チェックした商品