Using Time Series to Analyze Long-Range Fractal Patterns (Quantitative Applications in the Social Sciences)

個数:
電子版価格
¥5,140
  • 電子版あり

Using Time Series to Analyze Long-Range Fractal Patterns (Quantitative Applications in the Social Sciences)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 120 p.
  • 言語 ENG
  • 商品コード 9781544361420
  • DDC分類 519.55

Full Description

Using Time Series to Analyze Long Range Fractal Patterns presents methods for describing and analyzing dependency and irregularity in long time series. Irregularity refers to cycles that are similar in appearance, but unlike seasonal patterns more familiar to social scientists, repeated over a time scale that is not fixed. Until now, the application of these methods has mainly involved analysis of dynamical systems outside of the social sciences, but this volume makes it possible for social scientists to explore and document fractal patterns in dynamical social systems. Author Matthijs Koopmans concentrates on two general approaches to irregularity in long time series: autoregressive fractionally integrated moving average models, and power spectral density analysis. He demonstrates the methods through two kinds of examples: simulations that illustrate the patterns that might be encountered and serve as a benchmark for interpreting patterns in real data; and secondly social science examples such a long range data on monthly unemployment figures, daily school attendance rates; daily numbers of births to teens, and weekly survey data on political orientation. Data and R-scripts to replicate the analyses are available on an accompanying website.

Contents

Series Editor Introduction
Acknowledgments
About the Author
Chapter 1: Introduction
A. Limitations of Traditional Approaches
B. Long-Range Dependencies
C. The Search for Complexity
D. Plan of the Book
Chapter 2: Autoregressive Fractionally Integrated Moving Average or Fractional Differencing
A. Basic Results in Time Series Analysis
B. Long-Range Dependencies
C. Application of the Models to Real Data
D. Chapter Summary and Reflection
Chapter 3: Power Spectral Density Analysis
A. From the Time Domain to the Frequency Domain
B. Spectral Density in Real Data
C. Fractional Estimates of Gaussian Noise and Brownian Motion
D. Chapter Summary and Reflection
Chapter 4: Related Methods in the Time and Frequency Domains
A. Estimating Fractal Variance
B. Spectral Regression
C. The Hurst Exponent Revisited
D. Chapter Summary and Reflection
Chapter 5: Variations on the Fractality Theme
A. Sensitive Dependence on Initial Conditions
B. The Multivariate Case
C. Regular Long-Range Processes and Nested Regularity
D. The Impact of Interventions
Chapter 6: Conclusion
A. Benefits and Drawbacks of Fractal Analysis
B. Interpretation of Parameters in Terms of Complexity Theory
C. A Note About the Software and Its Use
References
Appendix
Index

最近チェックした商品