Teaching Mathematics in the Visible Learning Classroom, Grades K-2 (Corwin Mathematics Series)

個数:
電子版価格
¥5,788
  • 電書あり

Teaching Mathematics in the Visible Learning Classroom, Grades K-2 (Corwin Mathematics Series)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 288 p.
  • 言語 ENG
  • 商品コード 9781544333298
  • DDC分類 372.7044

Full Description

Select the right task, at the right time, for the right phase of learning

Young students come to elementary classrooms with different background knowledge, levels of readiness, and learning needs. What works best to help K-2 students develop the tools to become visible learners in mathematics? What works best for K-=-2 mathematics learning at the surface, deep, and transfer levels?

 

In this sequel to the megawatt bestseller Visible Learning for Mathematics, John Almarode, Douglas Fisher, Kateri Thunder, John Hattie, and Nancy Frey help you answer those questions by showing how Visible Learning strategies look in action in K-2 mathematics classrooms. Walk in the shoes of teachers as they mix and match the strategies, tasks, and assessments seminal to making conceptual understanding, procedural knowledge, and the application of mathematical concepts and thinking skills visible to young students as well as to you.

 
Using grade-leveled examples and a decision-making matrix, you'll learn to



Articulate clear learning intentions and success criteria at surface, deep, and transfer levels
Employ evidence to guide students along the path of becoming metacognitive and self-directed mathematics achievers
Use formative assessments to track what students understand, what they don't, and why
Select the right task for the conceptual, procedural, or application emphasis you want, ensuring the task is for the right phase of learning
Adjust the difficulty and complexity of any task to meet the needs of all learners

It's not only what works, but when. Exemplary lessons, video clips, and online resources help you leverage the most effective teaching practices at the most effective time to meet the surface, deep, and transfer learning needs of every K-2 student.

 

Contents

List of Videos
Acknowledgments
About the Authors
Introduction
What Works Best
What Works Best When
The Path to Assessment-Capable Visible Learners in Mathematics
How This Book Works
Chapter 1. Teaching With Clarity in Mathematics
Components of Effective Mathematics Learning
Surface, Deep, and Transfer Learning
Moving Learners Through the Phases of Learning
Differentiating Tasks for Complexity and Difficulty
Approaches to Mathematics Instruction
Checks for Understanding
Profiles of Three Teachers
Reflection
Chapter 2. Teaching for the Application of Concepts and Thinking Skills
Mr. Southall and Number Combinations
Ms. McLellan and Unknown Measurement Values
Ms. Busching and the Ever-Expanding Number System
Reflection
Chapter 3. Teaching for Conceptual Understanding
Mr. Southall and Patterns
Ms. McLellan and the Meaning of the Equal Sign
Ms. Busching and the Meaning of Addition
Reflection
Chapter 4. Teaching for Procedural Knowledge and Fluency
Mr. Southall and Multiple Representations
Ms. McLellan and Equality Conjectures
Ms. Busching and Modeling Subtraction
Reflection
Chapter 5. Knowing Your Impact: Evaluating for Mastery
What Is Mastery Learning?
Ensuring Tasks Evaluate Mastery
Ensuring Tests Evaluate Mastery
Feedback for Mastery
Conclusion
Final Reflection
Appendices
A. Effect Sizes
B. Teaching for Clarity Planning Guide
C. Learning Intentions and Success Criteria Template
D. A Selection of International Mathematical Practice or Process Standards
References
Index