Medical Applications of Laser Molecular Imaging and Machine Learning (Press Monographs)

個数:

Medical Applications of Laser Molecular Imaging and Machine Learning (Press Monographs)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 252 p.
  • 言語 ENG
  • 商品コード 9781510645349
  • DDC分類 616.0756

Full Description

This book focuses on machine-learning medical applications based on molecular spectroscopy and molecular imaging data. Written with specialists in biomedical optics, laser spectroscopy, bioengineering, and medical engineering in mind, the chapters cover topics such as biomarker conception, molecular laser imaging, and artificial intelligence; laser-based molecular-data-acquisition technologies; feature selection and extraction methods; unsupervised and supervised approaches; and in vivo non-invasive diagnostics using laser molecular spectroscopy and imaging combined with machine learning. Sample datasets and Python modules are provided as supplemental materials for the most useful algorithms.

Contents

Preface
1 Fundamental Concepts Related to Laser Molecular Imaging
Introduction
1.1 Molecular Biomarkers
1.1.1 Biomarker conception
1.1.2 Groups of molecular ""omics"" biomarkers
1.1.3 Pattern-recognition approach for metabolic profiling
1.1.4 Biological specimens for noninvasive diagnostics
1.2 Basics of Laser Molecular Spectroscopy and Imaging
1.2.1 Molecule absorption spectra
1.2.2 Raman scattering spectra
1.2.3 Fluorescence spectra
1.2.4 Molecular imaging
1.3 Basics of Machine Learning
Conclusion
References
2 Laser-based Molecular Data-Acquisition Technologies
Introduction
2.1 Data-Acquisition Technologies Suitable for Breath Biopsy
2.1.1 The aim of data acquisition by breathomics
2.1.2 Nonoptical experimental methods for breathomics
2.1.3 Breath air sampling
2.1.4 Laser absorption spectroscopy
2.1.5 Fluorescence spectroscopy
2.2 Data Acquisition Technologies Suitable for Optical Liquid Biopsy
2.2.1 Possible optical modes for liquid sample analysis
2.2.2 Data acquisition using unprocessed or drying liquid samples
2.3 Data Acquisition Technologies Suitable for Optical Tissue Biopsy
2.3.1 Experimental methods for nonoptical tissue biopsy
2.3.2 Interaction of laser radiation with a tissue
2.3.3 Possible experimental laser spectroscopy methods for in vivo tissue optical biopsy
2.3.4 Possible experimental laser molecular imaging methods for in vivo tissue optical biopsy
Conclusion
References
3 Informative Feature Extraction
Introduction
3.1 Feature Selection
3.1.1 Univariate methods of feature selection
3.1.2 Multivariate methods of feature selection
3.2 Feature Extraction
3.3 Outliers and Noise Reduction
3.3.1 Outlier removal
3.3.2 Noise reduction by signal filtration
Conclusion
References
4 Clusterization and Predictive Model Construction
Introduction
4.1 Unsupervised Learning Methods: Clusterization
4.1.1 K-means algorithm
4.1.2 Density-based spatial clustering of applications with noise (DBSCAN)
4.1.3 Markov clusterization algorithm (MCL)
4.2 Predictive Model Construction
4.2.1 Linear discriminant analysis (LDA)
4.2.2 K-nearest neighbors (KNN)
4.2.3 Partial least squared discriminant analysis (PLS-DA)
4.2.4 Soft independent modeling of class analogy (SIMCA)
4.2.5 Naive Bayes
4.2.6 Support vector machine (SVM)
4.2.7 Multi-class decision rules based on binary classifiers
4.2.8 A random forest
4.2.9 Artificial neural networks
4.2.10 Extreme learning machine (ELM)
4.2.11 Deep learning neural networks
4.2.12 Improving prediction models; ensemble learning
4.2.13 Predictive model validation
Conclusion
References
5 Medical Applications
Introduction
5.1 Breath Optical Biopsy by Laser Absorption Spectroscopy and Machine Learning
5.1.1 Machine learning pipeline for chemical-based breathomics
5.1.2 Machine learning pipeline for ""profiling""-based breathomics
5.2 Liquid Optical Biopsy by IR and THz Laser Spectroscopy and Machine Learning
5.2.1 Calibration and pre-processing
5.2.2 Chemical-based liquid optical biopsy data modeling by machine learning
5.2.3 ""Profiling""-based liquid optical biopsy data modeling by machine learning
5.3 Tissue Optical Biopsy Using Laser Molecular Imaging and Machine Learning
5.3.1 Calibration and pre-processing
5.3.2 Tissue optical biopsy data modeling using machine learning
Conclusion
References
Supplemental Materials
Index

最近チェックした商品