Optimal Bayesian Classification (Press Monograph)

個数:

Optimal Bayesian Classification (Press Monograph)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 362 p.
  • 言語 ENG
  • 商品コード 9781510630697
  • DDC分類 519.542

Full Description

The most basic problem of engineering is the design of optimal operators. Design takes different forms depending on the random process constituting the scientific model and the operator class of interest. For classification, the random process is a feature-label distribution, and a Bayes classifier minimizes classification error. Rarely do we know the feature-label distribution or have sufficient data to estimate it.

To best use available knowledge and data, this book takes a Bayesian approach to modeling the feature-label distribution and designs an optimal classifier relative to a posterior distribution governing an uncertainty class of feature-label distributions. The origins of this approach lie in estimating classifier error when there are insufficient data to hold out test data, in which case an optimal error estimate can be obtained relative to the uncertainty class. A natural next step is to forgo classical ad hoc classifier design and find an optimal classifier relative to the posterior distribution over the uncertainty class - this being an optimal Bayesian classifier.

最近チェックした商品