Risk Management for Cryptocurrency Portfolios

個数:

Risk Management for Cryptocurrency Portfolios

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 170 p.
  • 言語 ENG
  • 商品コード 9781501520099

Full Description

Cryptocurrencies have transformed finance by opening new avenues for investment and innovation, while exposing portfolios to extreme volatility, fat tails, liquidity shocks, and shifting regulation. Risk Management for Cryptocurrency Portfolios provides a rigorous, practice-oriented toolkit for this landscape. The book blends postmodern portfolio theory, heavy-tailed statistics, and empirically tested optimization methods into a coherent framework tailored to digital assets.

Starting from the data, the authors assemble a consistent set of 40 major tokens and examine hourly performance, stylized facts, and benchmarks. They study stationarity, the non-normal nature of returns, and tail risk using Hill estimators and generalized Pareto modeling and quantify distances between return series to guide diversification. The portfolio core begins with mean-variance analysis, the capital market line, and coherent risk measures. Building on this foundation, the book develops mean-CVaR optimization and equivalent formulations, with MATLAB implementations and step-by-step case studies.

Strategy chapters compare long-only and long-short constructions, including Jacobs et al. and Lo-Patel approaches, momentum variants, and portfolios under turnover constraints. Performance is evaluated with maximum drawdown and widely used ratios such as Sharpe, Sortino-Satchell, and the Rachev ratio.

The dynamic optimization introduces ARMA(1,1)-GARCH(1,1) models with Student's t-innovations, multivariate t-distributions and t-copulas, and the simulation of return scenarios. Robust optimization addresses model misspecification by treating observed return distributions as uncertain; readers learn box and ellipsoidal uncertainty sets, Kantorovich distances between discrete distributions, and robust CVaR portfolios on historical data.

Validation is integral. A backtesting suite consisting of value-at-risk tests, including binomial and traffic-light procedures, plus Kupiec, Christoffersen, and Haas tests, assesses model quality and contrasts historical, dynamic, and robust allocations. Written for practitioners, analysts, researchers, and graduate students, the text is selfcontained and comprehensive. Clear exposition, empirical examples, and ready to run MATLAB code make advanced methods usable in day-to-day portfolio construction. Risk Management for Cryptocurrency Portfolios equips readers with insight and tested techniques needed to build, stress-test and refine crypto portfolios with confidence.

最近チェックした商品