Random Number Generators—Principles and Practices : A Guide for Engineers and Programmers

個数:

Random Number Generators—Principles and Practices : A Guide for Engineers and Programmers

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 439 p.
  • 言語 ENG
  • 商品コード 9781501515132
  • DDC分類 518

Full Description

Random Number Generators, Principles and Practices has been written for programmers, hardware engineers, and sophisticated hobbyists interested in understanding random numbers generators and gaining the tools necessary to work with random number generators with confidence and knowledge.

Using an approach that employs clear diagrams and running code examples rather than excessive mathematics, random number related topics such as entropy estimation, entropy extraction, entropy sources, PRNGs, randomness testing, distribution generation, and many others are exposed and demystified.

If you have ever






Wondered how to test if data is really random




Needed to measure the randomness of data in real time as it is generated




Wondered how to get randomness into your programs




Wondered whether or not a random number generator is trustworthy




Wanted to be able to choose between random number generator solutions




Needed to turn uniform random data into a different distribution




Needed to ensure the random numbers from your computer will work for your cryptographic application




Wanted to combine more than one random number generator to increase reliability or security




Wanted to get random numbers in a floating point format




Needed to verify that a random number generator meets the requirements of a published standard like SP800-90 or AIS 31




Needed to choose between an LCG, PCG or XorShift algorithm

Then this might be the book for you.

Contents

1 Introduction

1.1 Tools

1.2 Terminology

1.3 The Many Types of Random Numbers

1.3.1 Uniform Random Numbers

2 Random Number Generators

2.1 Classes of Random Number Generators

2.2 Names for RNGs

3 Making Random Numbers

3.1 A Quick Overview of the RNG Types

3.2 The Structure of Full RNG Implementations

3.3 Pool Extractor Structures

3.4 Multiple Input Extractors

4 Physically Uncloneable Functions 21

4.1 The other kind âAS Static vs. Dynamic Random Number Generators .

5 Testing Random Numbers

5.1 Known Answer Tests

5.2 Distinguishing From Random

5.3 PRNG Test Suites

5.4 Entropy Measurements

5.5 Min Entropy Estimation

5.6 Model Equivalence Testing

5.7 Statistical Prerequisite Testing

5.8 The problem Distinguishing Entropy and Pseudo-randomness

5.9 PRNG Tests: DieHarder, NIST SP800-22,TestU01, China ICS 35.040

5.10 Entropy Measurements

5.11 Min Entropy Measurements

5.12 Modeling to Test a Source

5.13 Statistical Prerequisites

5.14 Testing for bias .

5.15 results that are âAŸtoo goodâAZ (E.G. Chi-square == 0.5)

5.16 Distinguishing Correlation from Bias

5.17 Testing for Stationary properties

5.18 FFT analysis

5.19 Online Testing

5.20 Working From the Source RNG

5.21 Tools

5.22 Summary

6 Entropy Extraction or Distillation

6.1 A simple extractor, the XOR gate

6.2 A simple way of improving the distribution of random numbers that have known missing

values using XOR

7 Quantifying Entropy

7.1 Rényi Entropy

7.2 Distance From Uniform



Topics to put somewhere in the book- in existing chapters and new chapters



8.1 XOR as a 2 bit extractor

8.2 Properties of real random numbers

8.3 Binomial distributions

8.4 Normal distributions

8.4.1 Dice, more dice

8.4.2 Central limit theorem

8.5 Seeing patterns

8.6 Regression to the mean

8.7 Lack of correlation, bias, algorithmic connections, predictability

8.8 What's a True random number?

8.9 Random numbers in cryptography

8.10 Things they help with liveness, unpredictability, resistance to attacks

8.11 Examples of use

8.11.1 Salting Passwords .

8.11.2 802.11i exchange

8.11.3 PKMv2 exchange

8.11.4 Making Keys

8.12 Examples of RNG crypto failures

8.12.1 Sony PS3 attack

8.12.2 MiFare Classic

8.12.3 Online Poker

8.12.4 Debian OpenSSL Fiasco

8.12.5 Linux Boot Time Entropy

8.13 Humans and random numbers

8.14 Result of asking people for a random number

8.14.1 Normal People

8.14.2 Crypto People

8.15 Mental Random Number Tricks

8.15.1 How to think of a really random number

8.16 PRNGs

8.17 extractors

8.17.1 CBC MAC

8.17.2 BIW

8.17.3 Von Neumann

8.18 Extractor Theory

8.19 Random Number Standards

8.19.1 SP800-90A B C .

8.19.2 Ansi X9.82

8.20 PRNG Algorithms

8.20.1 SP800-90A CTR DRBG

8.20.2 SP800-90A SHA DRBG

8.20.3 XOR Construction

8.20.4 Oversampling Construction

8.21 Yarrow

8.22 Whirlpool

8.23 Linux Kernel random service

8.24 Appendices

8.25 Resources

8.25.1 SW Sources

8.25.2 Online random number sources

8.26 Example Algorithm Vectors

8.26.1 SP800-90A CTR DRBG 128 & 256

8.26.2 SP800-90A Hash DRBG SHA-1 & SHA 256

8.26.3 AES-CBC-MAC Conditioner 128

8.26.4 AES-CBC-MAC Conditioner

8.27 SP800-90 LZ Tests Issues

最近チェックした商品