Practical AI for Business Leaders, Product Managers, and Entrepreneurs

個数:

Practical AI for Business Leaders, Product Managers, and Entrepreneurs

  • オンデマンド(OD/POD)版です。キャンセルは承れません。

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 240 p.
  • 言語 ENG
  • 商品コード 9781501514647
  • DDC分類 005.7

Full Description

Most economists agree that AI is a general purpose technology (GPT) like the steam engine, electricity, and the computer. AI will drive innovation in all sectors of the economy for the foreseeable future. Practical AI for Business Leaders, Product Managers, and Entrepreneurs is a technical guidebook for the business leader or anyone responsible for leading AI-related initiatives in their organization. The book can also be used as a foundation to explore the ethical implications of AI.



Authors Alfred Essa and Shirin Mojarad provide a gentle introduction to foundational topics in AI. Each topic is framed as a triad: concept, theory, and practice. The concept chapters develop the intuition, culminating in a practical case study. The theory chapters reveal the underlying technical machinery. The practice chapters provide code in Python to implement the models discussed in the case study.



With this book, readers will learn:






The technical foundations of machine learning and deep learning




How to apply the core technical concepts to solve business problems




The different methods used to evaluate AI models




How to understand model development as a tradeoff between accuracy and generalization




How to represent the computational aspects of AI using vectors and matrices




How to express the models in Python by using machine learning libraries such as scikit-learn, statsmodels, and keras

Contents

Introduction

What is AI and why it is at the center of major business transformation?

How is it related to machine learning?

What is deep learning, and how is it related to ML?

Why is it important?

How the book is organized

Who is the audience?


Section 1: Machine Learning Chapter 1.1, introduction, machine learning, different types of machine learning

Chapter 1.2, Machine Learning Technical Overview

Chapter 1.3, Hands-On Machine Learning with Scikit Learn

Chapter 1.4, Advanced Topics/flavors of Machine learning

Appendix: mathematical interlude




Section 2: Deep Learning

Chapter 2.1, introduction (what is it, why is it important)

Chapter 2.2, Deep Learning Technical Overview

Chapter 2.3, Hands-On Deep Learning with Keras

Chapter 2.4, Advanced Topics/flavors of deep learning

Appendix: mathematical interlude




Section 3: Putting AI into Practice: Innovation Framework

Chapter 3.1: Diffusion and Dynamics of Innovation

Chapter 3.2: Managing an Innovation Portfolio

最近チェックした商品