Stochastic Methods in Scientific Computing : From Foundations to Advanced Techniques (Chapman & Hall/crc Numerical Analysis and Scientific Computing Series)

個数:
電子版価格
¥11,600
  • 電子版あり

Stochastic Methods in Scientific Computing : From Foundations to Advanced Techniques (Chapman & Hall/crc Numerical Analysis and Scientific Computing Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 382 p.
  • 言語 ENG
  • 商品コード 9781498796330
  • DDC分類 518.28

Full Description

Stochastic Methods in Scientific Computing: From Foundations to Advanced Techniques introduces the reader to advanced concepts in stochastic modelling, rooted in an intuitive yet rigorous presentation of the underlying mathematical concepts. A particular emphasis is placed on illuminating the underpinning Mathematics, and yet have the practical applications in mind. The reader will find valuable insights into topics ranging from Social Sciences and Particle Physics to modern-day Computer Science with Machine Learning and AI in focus. The book also covers recent specialised techniques for notorious issues in the field of stochastic simulations, providing a valuable reference for advanced readers with an active interest in the field.

Features

Self-contained, starting from the theoretical foundations and advancing to the most recent developments in the field
Suitable as a reference for post-graduates and researchers or as supplementary reading for courses in numerical methods, scientific computing, and beyond
Interdisciplinary, laying a solid ground for field-specific applications in finance, physics and biosciences on common theoretical foundations
Replete with practical examples of applications to classic and current research problems in various fields.

Contents

1. Random Numbers. 1.1. Random numbers and probability distribution. 1.2. Central limit theorem. 1.3. Beyond the Normal distribution. 1.4. Exercises. 2. Random walks. 2.1. Random walk as a Markov process. 2.2. Random walks in 1 and 2 dimensions. 2.3. Levy flight. 2.4. Random walks with potentials. 2.5. Exercises. 3. Monte Carlo methods. 3.1. Objectives and concepts. 3.2. Monte-Carlo integration. 3.3. Markov Chain Monte-Carlo. 3.4. Advanced Error Analysis Techniques. 3.5. Error estimate in the presence of autocorrelation. 3.6. Error estimate for non-trivial estimators: The Jackknife, and the Bootstrap. 3.7. Biased Estimators. 3.8. Exercises. 4. Statistical models. 4.1. An introduction to thermodynamics. 4.2. From thermodynamics to statistical mechanics. 4.3. Phase transitions. 4.4. The Ising model. 4.5. An overview of other models. 4.6. Exercises. 5. Advanced Monte-Carlo simulation techniques. 5.1. Hamiltonian (Hybrid) Monte-Carlo (HMC) simulations. 5.2. Non-local Monte-Carlo update. 5.3. Micro-canonical simulations. 5.4. Flat histogram methods. 5.5. The Linear Logarithmic Relaxation (LLR) method. 5.6. Exercises. 6. From Statistical Systems to Quantum Field Theory. 6.1. Invitation: The O(2) model. 6.2. The Bridge to QFT: the Feynman path-integral. 6.3. Gauge Theories. 6.4. Adding fermion fields. 6.5. Exercises. 7. Current challenges in Monte-Carlo Simulations. 7.1. Sign and overlap problems. 7.2. Introduction to overlap problems. 7.3. Estimating probability density functions. 8. Data Analytics and Statistical Systems. 8.1. Model regression - L2 norm. 8.2. Gaussian Process. 8.3. Machine learning with graphs. 8.4. Emulation of statistical systems with Machine Learning. 8.5. Categorisation in statistical physics: Naive Bayes. 8.6. Machine learning classification of phase transitions.

最近チェックした商品