グラフィカル・モデル・ハンドブック<br>Handbook of Graphical Models (Chapman & Hall/crc Handbooks of Modern Statistical Methods)

個数:
電子版価格
¥13,038
  • 電子版あり

グラフィカル・モデル・ハンドブック
Handbook of Graphical Models (Chapman & Hall/crc Handbooks of Modern Statistical Methods)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 536 p.
  • 言語 ENG
  • 商品コード 9781498788625
  • DDC分類 519.5

Full Description

A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for causal inference.

While there exist a number of excellent books on graphical models, the field has grown so much that individual authors can hardly cover its entire scope. Moreover, the field is interdisciplinary by nature. Through chapters by leading researchers from different areas, this handbook provides a broad and accessible overview of the state of the art.

Key features:

* Contributions by leading researchers from a range of disciplines

* Structured in five parts, covering foundations, computational aspects, statistical inference, causal inference, and applications

* Balanced coverage of concepts, theory, methods, examples, and applications

* Chapters can be read mostly independently, while cross-references highlight connections

The handbook is targeted at a wide audience, including graduate students, applied researchers, and experts in graphical models.

Contents

Part I Conditional independencies and Markov properties 1. Conditional Independence and Basic Markov Properties - Milan Studený 2.Markov Properties for Mixed Graphical Models - Robin Evans 3. Algebraic Aspects of Conditional Independence and Graphical Models - Thomas Kahle, Johannes Rauh, and Seth Sullivant
Part II Computing with factorizing distributions 4. MAP Estimation: Linear Programming Relaxation and Message-Passing Algorithms - Ofer Meshi and Alexander G. Schwing 5. Sequential Monte Carlo Methods - Arnaud Doucet and Anthony Lee
Part III Statistical inference 6. Discrete Graphical Models and their Parametrization - Luca La Rocca and Alberto Roverato 7. Gaussian Graphical Models - Caroline Uhler 8. Bayesian inference in Graphical Gaussian Models - Hélène Massam 9. Latent tree models - Piotr Zwiernik 10.Neighborhood selection methods - Po-Ling Loh 11. Nonparametric Graphical Models - Han Liu and John La□erty 12.Inference in high-dimensional graphical models - Jana Janková and Sara van de Geer
Part IV Causal inference 13. Causal Concepts and Graphical Models - Vanessa Didelez 14. Identi□cation In Graphical Causal Models - Ilya Shpitser 15. Mediation Analysis - Johan Steen and Stijn Vansteelandt 16.Search for Causal Models - Peter Spirtes and Kun Zhang
Part V Applications 17.Graphical Models for Forensic Analysis - A. Philip Dawid and Julia Mortera 18. Graphical models in molecular systems biology - Sach Mukherjee and Chris Oates 19.Graphical Models in Genetics, Genomics and Metagenomics - Hongzhe Li and Jing Ma

最近チェックした商品