一般線形混合モデル:最新概念・応用・方法(第2版)<br>Generalized Linear Mixed Models : Modern Concepts, Methods and Applications (Chapman & Hall/crc Texts in Statistical Science) (2ND)

個数:

一般線形混合モデル:最新概念・応用・方法(第2版)
Generalized Linear Mixed Models : Modern Concepts, Methods and Applications (Chapman & Hall/crc Texts in Statistical Science) (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 648 p.
  • 言語 ENG
  • 商品コード 9781498755566
  • DDC分類 519.536

Full Description

Generalized Linear Mixed Models: Modern Concepts, Methods, and Applications (2nd edition) presents an updated introduction to linear modeling using the generalized linear mixed model (GLMM) as the overarching conceptual framework. For students new to statistical modeling, this book helps them see the big picture - linear modeling as broadly understood and its intimate connection with statistical design and mathematical statistics. For readers experienced in statistical practice, but new to GLMMs, the book provides a comprehensive introduction to GLMM methodology and its underlying theory.

Unlike textbooks that focus on classical linear models or generalized linear models or mixed models, this book covers all of the above as members of a unified GLMM family of linear models. In addition to essential theory and methodology, this book features a rich collection of examples using SAS® software to illustrate GLMM practice. This second edition is updated to reflect lessons learned and experience gained regarding best practices and modeling choices faced by GLMM practitioners. New to this edition are two chapters focusing on Bayesian methods for GLMMs.

Key Features:

Most statistical modeling books cover classical linear models or advanced generalized and mixed models; this book covers all members of the GLMM family - classical and advanced models
Incorporates lessons learned from experience and on-going research to provide up-to-date examples of best practices
Illustrates connections between statistical design and modeling: guidelines for translating study design into appropriate model and in-depth illustrations of how to implement these guidelines; use of GLMM methods to improve planning and design
Discusses the difference between marginal and conditional models, differences in the inference space they are intended to address and when each type of model is appropriate
In addition to likelihood-based frequentist estimation and inference, provides a brief introduction to Bayesian methods for GLMMs

Contents

Preface to the Second Edition

Part 1: Essential Background

1. Modeling Basics

2. Design Matters

3. Setting the Stage

Part 2: Estimation and Inference Theory

4. Pre-GLMM Estimation and Inference Basics

5. GLMM Estimation

6. Inference, Part I

7. Inference, Part II

Part 3: Applications

8. Treatment and Explanatory Variable Structure

9. Multi-Level Models

10. Best Linear Unbiased Prediction

11. Counts

12. Rates and Proportions

13. Zero-inflated and Hurdle Models

14. Multinomial Data

15. Time-to-Event Data

16. Smoothing Splines and Additive Models

17. Correlated Errors, part 1: Repeated Measures

18. Correlated Errors, part 2: Spatial Variability

19. Bayesian Implementation of GLMM

20. Four Bayesian GLMM Examples

21. Precision, Power, Sample Size and Planning