Fast Solvers for Mesh-Based Computations (Advances in Applied Mathematics)

個数:

Fast Solvers for Mesh-Based Computations (Advances in Applied Mathematics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 348 p.
  • 言語 ENG
  • 商品コード 9781498754194
  • DDC分類 518.1

Full Description

Fast Solvers for Mesh-Based Computations presents an alternative way of constructing multi-frontal direct solver algorithms for mesh-based computations. It also describes how to design and implement those algorithms.

The book's structure follows those of the matrices, starting from tri-diagonal matrices resulting from one-dimensional mesh-based methods, through multi-diagonal or block-diagonal matrices, and ending with general sparse matrices.

Each chapter explains how to design and implement a parallel sparse direct solver specific for a particular structure of the matrix. All the solvers presented are either designed from scratch or based on previously designed and implemented solvers.

Each chapter also derives the complete JAVA or Fortran code of the parallel sparse direct solver. The exemplary JAVA codes can be used as reference for designing parallel direct solvers in more efficient languages for specific architectures of parallel machines.

The author also derives exemplary element frontal matrices for different one-, two-, or three-dimensional mesh-based computations. These matrices can be used as references for testing the developed parallel direct solvers.

Based on more than 10 years of the author's experience in the area, this book is a valuable resource for researchers and graduate students who would like to learn how to design and implement parallel direct solvers for mesh-based computations.

Contents

Multi-Frontal Direct Solver Algorithm for Tri-Diagonal and Block-Diagonal One-Dimensional Problems. One-Dimensional Non-Stationary Problems. Multi-Frontal Direct Solver Algorithm for Multi-Diagonal One-Dimensional Problems. Multi-Frontal Direct Solver Algorithm for Two-Dimensional Grids with Block Diagonal Structure of the Matrix. Multi-Frontal Direct Solver Algorithm for Three-Dimensional Grids with Block Diagonal Structure of the Matrix. Multi-Frontal Direct Solver Algorithm for Two-Dimensional Isogeometric Finite Element Method. Expressing Partial LU Factorization by BLAS Calls. Multi-Frontal Solver Algorithm for Arbitrary Mesh-Based Computations. Elimination Trees. Reutilization and Reuse of Partial LU Factorizatons. Numerical Experiments.