- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
This book provides a foundation for the application of methods for analyzing multivariate generalized linear mixed models using R. It covers the necessary background in GLMs, mixed models, and multivariate data analysis, and combines them to provide methodology for MGLMs. It has a practical focus, with examples throughout, a supplementary R package for all the models, and detailed case studies. The second edition has been updated with an R package for all models and more detailed case studies.
Contents
Introduction. Generalized Linear Models for Continuous/Interval Scale Data. Generalized Linear Models for Other Types of Data. Family of Generalized Linear Models. Mixed Models for Continuous/Interval Scale Data. Mixed Models for Binary Data. Mixed Models for Ordinal Data. Mixed Models for Count Data. Family of Two-Level Generalized Linear Models. Three-Level Generalized Linear Models. Models for Multivariate Data. Models for Duration and Event History Data. Stayers, Non-Susceptibles, and Endpoints. Handling Initial Conditions/State Dependence in Binary Data. Incidental Parameters: An Empirical Comparison of Fixed Effects and Random Effects Models. Case Studies. Appendix: Introduction to R Package MGLMM.