分位点回帰ハンドブック<br>Handbook of Quantile Regression (Chapman & Hall/crc Handbooks of Modern Statistical Methods)

個数:

分位点回帰ハンドブック
Handbook of Quantile Regression (Chapman & Hall/crc Handbooks of Modern Statistical Methods)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 484 p.
  • 言語 ENG
  • 商品コード 9781498725286
  • DDC分類 519.536

Full Description

Quantile regression constitutes an ensemble of statistical techniques intended to estimate and draw inferences about conditional quantile functions. Median regression, as introduced in the 18th century by Boscovich and Laplace, is a special case. In contrast to conventional mean regression that minimizes sums of squared residuals, median regression minimizes sums of absolute residuals; quantile regression simply replaces symmetric absolute loss by asymmetric linear loss.

Since its introduction in the 1970's by Koenker and Bassett, quantile regression has been gradually extended to a wide variety of data analytic settings including time series, survival analysis, and longitudinal data. By focusing attention on local slices of the conditional distribution of response variables it is capable of providing a more complete, more nuanced view of heterogeneous covariate effects. Applications of quantile regression can now be found throughout the sciences, including astrophysics, chemistry, ecology, economics, finance, genomics, medicine, and meteorology. Software for quantile regression is now widely available in all the major statistical computing environments.

The objective of this volume is to provide a comprehensive review of recent developments of quantile regression methodology illustrating its applicability in a wide range of scientific settings.

The intended audience of the volume is researchers and graduate students across a diverse set of disciplines.

Contents

A Quantile Regression Memoir - Gilbert W. Bassett Jr. and Roger Koenker

Resampling Methods - Xuming He

Quantile Regression: Penalized - Ivan Mizera

Bayesian Quantile Regression - Huixia Judy Wang and Yunwen Yang

Computational Methods for Quantile Regression - Roger Koenker

Survival Analysis: A Quantile Perspective - Zhiliang Ying and Tony Sit

Quantile Regression for Survival Analysis - Limin Peng

Survival Analysis with Competing Risks and Semi-competing Risks Data - Ruosha Li and Limin Peng

Instrumental Variable Quantile Regression - Victor Chernozhukov, Christian Hansen, and Kaspar Wuethrich

Local Quantile Treatment Effects - Blaise Melly and Kaspar Wuethrich

Quantile Regression with Measurement Errors and Missing Data - Ying Wei

Multiple-Output Quantile Regression - Marc Hallin and Miroslav Siman

Sample Selection in Quantile Regression: A Survey - Manuel Arellano and Stephane Bonhomme

Nonparametric Quantile Regression for Banach-valued Response - Joydeep Chowdhury and Probal Chaudhuri

High-Dimensional Quantile Regression - Alexandre Belloni, Victor Chernozhukov, and Kengo Kato

Nonconvex Penalized Quantile Regression: A Review of Methods, Theory and Algorithms - Lan Wang

QAR and Quantile Time Series Analysis - Zhijie Xiao

Extremal Quantile Regression -Victor Chernozhukov, Ivan Fernandez-Val, and Tetsuya Kaji

Quantile regression methods for longitudinal data - Antonio F. Galvao and Kengo Kato

Quantile Regression Applications in Finance - Oliver Linton and Zhijie Xiao

Quantile regression for Genetic and Genomic Applications - Laurent Briollais and Gilles Durrieu

Quantile regression applications in ecology and the environmental sciences - Brian S. Cade

最近チェックした商品