Introduction to Computational Models with Python (Chapman & Hall/crc Computational Science)

個数:
  • ポイントキャンペーン

Introduction to Computational Models with Python (Chapman & Hall/crc Computational Science)

  • ウェブストア価格 ¥30,553(本体¥27,776)
  • Chapman & Hall/CRC(2015/09発売)
  • 外貨定価 US$ 140.00
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 1,385pt
  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 496 p.
  • 言語 ENG
  • 商品コード 9781498712033
  • DDC分類 003.3513

Full Description

Introduction to Computational Models with Python explains how to implement computational models using the flexible and easy-to-use Python programming language. The book uses the Python programming language interpreter and several packages from the huge Python Library that improve the performance of numerical computing, such as the Numpy and Scipy modules. The Python source code and data files are available on the author's website.

The book's five sections present:

An overview of problem solving and simple Python programs, introducing the basic models and techniques for designing and implementing problem solutions, independent of software and hardware tools
Programming principles with the Python programming language, covering basic programming concepts, data definitions, programming structures with flowcharts and pseudo-code, solving problems, and algorithms
Python lists, arrays, basic data structures, object orientation, linked lists, recursion, and running programs under Linux
Implementation of computational models with Python using Numpy, with examples and case studies
The modeling of linear optimization problems, from problem formulation to implementation of computational models

This book introduces the principles of computational modeling as well as the approaches of multi- and interdisciplinary computing to beginners in the field. It provides the foundation for more advanced studies in scientific computing, including parallel computing using MPI, grid computing, and other methods and techniques used in high-performance computing.

Contents

Problem Solving: Problem Solving and Computing. Simple Python Programs. Basic Programming Principles with Python: Modules and Functions. Program Structures. The Selection Program Structure. The Repetition Program Structure. Data Structures, Object Orientation, and Recursion: Python Lists, Strings, and Other Data Sequences. Object Orientation. Object-Oriented Programs. Linked Lists. Recursion. Fundamental Computational Models with Python: Computational Models with Arithmetic Growth. Computational Models with Quadratic Growth. Models with Geometric Growth. Computational Models with Polynomial Growth. Empirical Models with Interpolation and Curve Fitting. Using Arrays with Numpy. Models with Matrices and Linear Equations. Introduction to Models of Dynamical Systems. Linear Optimization Models: Linear Optimization Modeling. Solving Linear Optimization Models. Sensitivity Analysis and Duality. Transportation Models. Network Models. Integer Linear Optimization Models.

最近チェックした商品