Nonlinear Dispersive Partial Differential Equations and Inverse Scattering (Fields Institute Communications)

個数:
電子版価格
¥22,833
  • 電子版あり

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering (Fields Institute Communications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 528 p.
  • 言語 ENG
  • 商品コード 9781493998050
  • DDC分類 515

Full Description

This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift's Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing ​nonlinear Schrödinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions.

The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.

Contents

Fifty years of KdV: an integrable system (P. Deift).- Wave turbulence and complete integrability (P. Gerard).- Benjamin-Ono and Intermediate Long Wave Equations: Modeling, IST, and PDE (J.-C. Saut).- Inverse scattering and global well-posedness in one and two dimensions (P. Perry).- Dispersive asymptotics for linear and integrable equations by the d-bar steepest descent method (M. Dieng, K. McLaughin, P. Miller).- Instability of solutions in the 2d Zakharov-Kuznetzov equation (L. Farah, J.  Holmer, S. Roudenko).- On the nonexistence of local, gauge-invariant Birkhoff coordinates for focussing NLS equation (T. Kappeler, P. Topalov).- Extended decay properties for generalized BBM equation (C. Kwok, C. Munoz).- Ground state solutions of the complex Gross-Pitaevskii equation (T. Mizumachi).- Inverse scattering for the massive Thirring model (D. Pelinovsky, A. Saalman).- Anomolous (rogue) waves in nature, their recurrence, and the nonlinear Schrodinger model (P. Santini, P. Grinevich). 

最近チェックした商品