Statistical Analysis in Proteomics (Methods in Molecular Biology)

個数:

Statistical Analysis in Proteomics (Methods in Molecular Biology)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 313 p.
  • 言語 ENG
  • 商品コード 9781493979875
  • DDC分類 572.6

Full Description

This valuable collection aims to provide a collection of frequently used statistical methods in the field of proteomics. Although there is a large overlap between statistical methods for the different 'omics' fields, methods for analyzing data from proteomics experiments need their own specific adaptations. To satisfy that need, Statistical Analysis in Proteomics focuses on the planning of proteomics experiments, the preprocessing and analysis of the data, the integration of proteomics data with other high-throughput data, as well as some special topics. Written for the highly successful Methods in Molecular Biology series, the chapters contain the kind of detail and expert implementation advice that makes for a smooth transition to the laboratory.

Practical and authoritative, Statistical Analysis in Proteomics serves as an ideal reference for statisticians involved in the planning and analysis of proteomics experiments, beginners as well as advanced researchers, and also for biologists, biochemists, and medical researchers who want to learn more about the statistical opportunities in the analysis of proteomics data.

Contents

Introduction to Proteomics Technologies.- Topics in Study Design and Analysis for Multi-Stage Clinical Proteomics Studies.- Preprocessing and Analysis of LC-MS-Based Proteomic Data.- Normalization of Reverse Phase Protein Microarray Data: Choosing the Best Normalization Analyte.- Outlier Detection for Mass Spectrometric Data.- Visualization and Differential Analysis of Protein Expression Data Using R.- False Discovery Rate Estimation in Proteomics.- A Nonparametric Bayesian Model for Nested Clustering.- Set-Based Test Procedures for the Functional Analysis of Protein Lists from Differential Analysis.- Classification of Samples with Order Restricted Discriminant Rules.- Application of Discriminant Analysis and Cross Validation on Proteomics Data.- Protein Sequence Analysis by Proximities.- Statistical Method for Integrative Platform Analysis: Application to Integration of Proteomic and Microarray Data.- Data Fusion in Metabolomics and Proteomics for Biomarkers Discovery.- Reconstruction of Protein Networks Using Reverse Phase Protein Array Data.- Detection of Unknown Amino Acid Substitutions Using Error-Tolerant Database Search.- Data Analysis Strategies for Protein Modification Identification.- Dissecting the iTRAQ DataAnalysis.- Statistical Aspects in Proteomic Biomarker Discovery.

最近チェックした商品