Practical Machine Learning - Innovations in Recommendation

個数:

Practical Machine Learning - Innovations in Recommendation

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 56 p.
  • 言語 ENG
  • 商品コード 9781491915387
  • DDC分類 006.31

Full Description

Building a simple but powerful recommendation system is much easier than you think. Approachable for all levels of expertise, this report explains innovations that make machine learning practical for business production settings--and demonstrates how even a small-scale development team can design an effective large-scale recommendation system.

Apache Mahout committers Ted Dunning and Ellen Friedman walk you through a design that relies on careful simplification. You'll learn how to collect the right data, analyze it with an algorithm from the Mahout library, and then easily deploy the recommender using search technology, such as Apache Solr or Elasticsearch. Powerful and effective, this efficient combination does learning offline and delivers rapid response recommendations in real time.

Understand the tradeoffs between simple and complex recommenders
Collect user data that tracks user actions--rather than their ratings
Predict what a user wants based on behavior by others, using Mahoutfor co-occurrence analysis
Use search technology to offer recommendations in real time, complete with item metadata
Watch the recommender in action with a music service example
Improve your recommender with dithering, multimodal recommendation, and other techniques

最近チェックした商品