MATLAB機械学習レシピ(第3版)<br>MATLAB Machine Learning Recipes : A Problem-Solution Approach (3RD)

個数:

MATLAB機械学習レシピ(第3版)
MATLAB Machine Learning Recipes : A Problem-Solution Approach (3RD)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 310 p.
  • 言語 ENG
  • 商品コード 9781484298459

Full Description

Harness the power of MATLAB to resolve a wide range of machine learning challenges. This new and updated third edition provides examples of technologies critical to machine learning. Each example solves a real-world problem, and all code provided is executable. You can easily look up a particular problem and follow the steps in the solution.
This book has something for everyone interested in machine learning. It also has material that will allow those with an interest in other technology areas to see how machine learning and MATLAB can help them solve problems in their areas of expertise. The chapter on data representation and MATLAB graphics includes new data types and additional graphics. Chapters on fuzzy logic, simple neural nets, and autonomous driving have new examples added. And there is a new chapter on spacecraft attitude determination using neural nets. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow you to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more.
What You Will Learn

Write code for machine learning, adaptive control, and estimation using MATLAB
Use MATLAB graphics and visualization tools for machine learning
Become familiar with neural nets
Build expert systems
Understand adaptive control
Gain knowledge of Kalman Filters

Who This Book Is For
Software engineers, control engineers, university faculty, undergraduate and graduate students, hobbyists.
 

Contents

Chapter 1. An Overview of Machine Learning.- Chapter 2. Data Representation.- Chapter 3. MATLAB Graphics.- Chapter 4. Kalman Filters.- Chapter 5. Adaptive Control.- Chapter 6. Neural Aircraft Control.- Chapter 7. Fuzzy Logic.- Chapter 8. Classification with Neural Nets.- Chapter 9. Simple Neural Nets.- Chapter 10. Data Classification. - Chapter 11. Neural Nets with Deep Learning.- Chapter 12. Multiple Hypothesis Testing.- Chapter 13.  Autonomous Driving with MHT.- Chapter 14. Case-Based Expert Systems.- Chapter 15. Spacecraft Attitude Determination Using Neural Nets. -Appendix A Brief History of Autonomous Learning.- Appendix B. Software for Autonomous Learning.

最近チェックした商品