Python Debugging for AI, Machine Learning, and Cloud Computing : A Pattern-Oriented Approach (1st)

個数:

Python Debugging for AI, Machine Learning, and Cloud Computing : A Pattern-Oriented Approach (1st)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9781484297445

Full Description

This book is for those who wish to understand how Python debugging is and can be used to develop robust and reliable AI, machine learning, and cloud computing software. It will teach you a novel pattern-oriented approach to diagnose and debug abnormal software structure and behavior.

The book begins with an introduction to the pattern-oriented software diagnostics and debugging process that, before performing Python debugging, diagnoses problems in various software artifacts such as memory dumps, traces, and logs. Next, you'll learn to use various debugging patterns through Python case studies that model abnormal software behavior. You'll also be exposed to Python debugging techniques specific to cloud native and machine learning environments and explore how recent advances in AI/ML can help in Python debugging. Over the course of the book, case studies will show you how to resolve issues around environmental problems, crashes, hangs, resource spikes, leaks, and performancedegradation. This includes tracing, logging, and analyzing memory dumps using native WinDbg and GDB debuggers. 

Upon completing this book, you will have the knowledge and tools needed to employ Python debugging in the development of AI, machine learning, and cloud computing applications.

What You Will Learn

Employ a pattern-oriented approach to Python debugging that starts with diagnostics of common software problems
Use tips and tricks to get the most out of popular IDEs, notebooks, and command-line Python debugging
Understand Python internals for interfacing with operating systems and external modules
Perform Python memory dump analysis, tracing, and logging

Who This Book Is For

Software developers, AI/ML engineers, researchers, data engineers, as well as MLOps and DevOps professionals.

Contents

Chapter 1: Fundamental Vocabulary.- Chapter 2: Pattern-Oriented Debugging.- Chapter 3: Elementary Diagnostics Patterns.- Chapter 4: Debugging Analysis Patterns.- Chapter 5: Debugging Implementation Patterns.- Chapter 6: IDE Debugging in Cloud.- Chapter 7: Debugging Presentation Patterns.- Chapter 8: Debugging Architecture Patterns.- Chapter 9: Debugging Design Patterns.- Chapter 10: Debugging Usage Patterns.- Chapter 11: Case Study: Resource Leaks.- Chapter 12: Case Study: Deadlock.- Chapter 13: Challenges of Python Debugging in Cloud Computing.- Chapter 14: Challenges of Python Debugging in AI and Machine Learning.- Chapter 15: What AI and Machine Learning Can Do for Python Debugging.- Chapter 16: The List of Debugging Patterns.

最近チェックした商品