Explainable AI Recipes : Implement Solutions to Model Explainability and Interpretability with Python (1st)

個数:

Explainable AI Recipes : Implement Solutions to Model Explainability and Interpretability with Python (1st)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 253 p.
  • 言語 ENG
  • 商品コード 9781484290286

Full Description

Understand how to use Explainable AI (XAI) libraries and build trust in AI and machine learning models. This book utilizes a problem-solution approach to explaining machine learning models and their algorithms. 
The book starts with model interpretation for supervised learning linear models, which includes feature importance, partial dependency analysis, and influential data point analysis for both classification and regression models. Next, it explains supervised learning using non-linear models and state-of-the-art frameworks such as SHAP values/scores and LIME for local interpretation. Explainability for time series models is covered using LIME and SHAP, as are natural language processing-related tasks such as text classification, and sentiment analysis with ELI5, and ALIBI. The book concludes with complex model classification and regression-like neural networks and deep learning models using the CAPTUM framework that shows feature attribution, neuron attribution,and activation attribution.   
After reading this book, you will understand AI and machine learning models and be able to put that knowledge into practice to bring more accuracy and transparency to your analyses.

What You Will Learn

Create code snippets and explain machine learning models using Python
Leverage deep learning models using the latest code with agile implementations
Build, train, and explain neural network models designed to scale
Understand the different variants of neural network models 

Who This Book Is For
AI engineers, data scientists, and software developers interested in XAI

Contents

Chapter 1:  Introduction to Explainability Library Installations.- Chapter 2:  Linear Supervised Model Explainability.- Chapter 3: Non-Linear Supervised Learning Model Explainability.- Chapter 4: Ensemble Model for Supervised Learning Explainability.- Chapter 5: Explainability for Natural Language Modeling.- Chapter 6: Time Series Model Explainability.- Chapter 7: Deep Neural Network Model Explainability.

最近チェックした商品