Introduction to Transformers for NLP : With Hugging Face Library and Models to Solve Problems (1st)

個数:

Introduction to Transformers for NLP : With Hugging Face Library and Models to Solve Problems (1st)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 145 p.
  • 言語 ENG
  • 商品コード 9781484288436

Full Description

Get a hands-on introduction to Transformer architecture using the Hugging Face library. This book explains how Transformers are changing the AI domain, particularly in the area of natural language processing.

This book covers Transformer architecture and its relevance in natural language processing (NLP). It starts with an introduction to NLP and a progression of language models from n-grams to a Transformer-based architecture. Next, it offers some basic Transformers examples using the Google colab engine. Then, it introduces the Hugging Face ecosystem and the different libraries and models provided by it. Moving forward, it explains language models such as Google BERT with some examples before providing a deep dive into Hugging Face API using different language models to address tasks such as sentence classification, sentiment analysis, summarization, and text generation.

After completing Introduction to Transformers for NLP, you will understand Transformer concepts and be able to solve problems using the Hugging Face library.

What You Will Learn

Understand language models and their importance in NLP and NLU (Natural Language Understanding)
Master Transformer architecture through practical examples
Use the Hugging Face library in Transformer-based language models
Create a simple code generator in Python based on Transformer architecture

Who This Book Is ForData Scientists and software developers interested in developing their skills in NLP and NLU (Natural Language Understanding)

Contents

Chapter 1: Introduction to Language Models.- Chapter 2: Introduction to Transformers.- Chapter 3: BERT.- Chapter 4: Hugging Face.- Chapter 5: Tasks Using the Huggingface Library.- Chapter 6: Fine-Tuning Pre-Trained Models.- Appendix A: Vision Transformers.

最近チェックした商品