Practical Business Analytics Using R and Python : Solve Business Problems Using a Data-driven Approach (2ND)

個数:

Practical Business Analytics Using R and Python : Solve Business Problems Using a Data-driven Approach (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9781484287538

Full Description

This book illustrates how data can be useful in solving business problems. It explores various analytics techniques for using data to discover hidden patterns and relationships, predict future outcomes, optimize efficiency and improve the performance of organizations. You'll learn how to analyze data by applying concepts of statistics, probability theory, and linear algebra. In this new edition, both R and Python are used to demonstrate these analyses. Practical Business Analytics Using R and Python also features new chapters covering databases, SQL, Neural networks, Text Analytics, and Natural Language Processing.

Part one begins with an introduction to analytics, the foundations required to perform data analytics, and explains different analytics terms and concepts such as databases and SQL, basic statistics, probability theory, and data exploration. Part two introduces predictive models using statistical machine learning and discusses concepts like regression, classification, and neural networks. Part three covers two of the most popular unsupervised learning techniques, clustering and association mining, as well as text mining and natural language processing (NLP). The book concludes with an overview of big data analytics, R and Python essentials for analytics including libraries such as pandas and NumPy.

Upon completing this book, you will understand how to improve business outcomes by leveraging R and Python for data analytics.

What You Will Learn

Master the mathematical foundations required for business analytics
Understand various analytics models and data mining techniques such as regression, supervised machine learning algorithms for modeling, unsupervised modeling techniques, and how to choose the correct algorithm for analysis in any given task
Use R and Python to develop descriptive models, predictive models, and optimize models
Interpret and recommend actions based on analytical model outcomes

Who This Book Is For

Software professionals and developers, managers, and executives who want to understand and learn the fundamentals of analytics using R and Python.

Contents

Section 1: Introduction to Analytics.- Chapter 1: Business Analytics Revolution.- Chapter 2: Foundations of Business Analytics.- Chapter 3: Structured Query Language (SQL) Analytics.- Chapter 4: Business Analytics Process.- Chapter 5: Exploratory Data Analysis (EDA).- Chapter 6: Evaluating Analytics Model Performance.- Section II: Supervised Learning and Predictive Analytics.- Chapter 7: Simple Linear Regressions.- Chapter 8: Multiple Linear Regressions.- Chapter 9: Classification.- Chapter 10: Neural Networks.- Chapter 11: Logistic Regression.- Section III: Time Series Models.- Chapter 12: Time Series - Forecasting.- Section IV: Unsupervised Model and Text Mining.- Chapter 13: Cluster Analysis.- Chapter 14: Relationship Data Mining.- Chapter 15: Mining Text and Text Analytics.- Chapter 16: Big Data and Big Data Analytics.- Section V: Business Analytics Tools.- Chapter 17: R programming for Analytics.- Chapter 18: Python Programming for Analytics.

最近チェックした商品