Modern Data Engineering with Apache Spark : A Hands-On Guide for Building Mission-Critical Streaming Applications (1st)

個数:

Modern Data Engineering with Apache Spark : A Hands-On Guide for Building Mission-Critical Streaming Applications (1st)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 585 p.
  • 言語 ENG
  • 商品コード 9781484274514
  • DDC分類 005

Full Description

Leverage Apache Spark within a modern data engineering ecosystem. This hands-on guide will teach you how to write fully functional applications, follow industry best practices, and learn the rationale behind these decisions. With Apache Spark as the foundation, you will follow a step-by-step journey beginning with the basics of data ingestion, processing, and transformation, and ending up with an entire local data platform running Apache Spark, Apache Zeppelin, Apache Kafka, Redis, MySQL, Minio (S3), and Apache Airflow.

Apache Spark applications solve a wide range of data problems from traditional data loading and processing to rich SQL-based analysis as well as complex machine learning workloads and even near real-time processing of streaming data. Spark fits well as a central foundation for any data engineering workload. This book will teach you to write interactive Spark applications using Apache Zeppelin notebooks, write and compilereusable applications and modules, and fully test both batch and streaming. You will also learn to containerize your applications using Docker and run and deploy your Spark applications using a variety of tools such as Apache Airflow, Docker and Kubernetes.​Reading this book will empower you to take advantage of Apache Spark to optimize your data pipelines and teach you to craft modular and testable Spark applications. You will create and deploy mission-critical streaming spark applications in a low-stress environment that paves the way for your own path to production.


What You Will Learn

Simplify data transformation with Spark Pipelines and Spark SQL

Bridge data engineering with machine learning
Architect modular data pipeline applications

Build reusable application components and libraries
Containerize your Spark applications for consistency and reliability
Use Docker and Kubernetes to deploy your Spark applications

Speed up application experimentation using Apache Zeppelin and Docker
Understand serializable structured data and data contracts
Harness effective strategies for optimizing data in your data lakes
Build end-to-end Spark structured streaming applications using Redis and Apache Kafka
Embrace testing for your batch and streaming applications
Deploy and monitor your Spark applications


Who This Book Is For
Professional software engineers who want to take their current skills and apply them to new and exciting opportunities within the data ecosystem, practicing data engineers who are looking for a guiding light while traversing the many challenges of moving from batch to streaming modes, data architects who wish to provide clear and concise direction for how best to harness anduse Apache Spark within their organization, and those interested in the ins and outs of becoming a modern data engineer in today's fast-paced and data-hungry world

Contents

Part I. The Fundamentals of Data Engineering with Spark.- 1. Introduction to Modern Data Engineering.- 2. Getting Started with Apache Spark.- 3. Working with Data.- 4. Transforming Data with Spark SQL and the  DataFrame API.- 5. Bridging Spark SQL with JDBC.- 6. Data Discovery and the Spark SQL Catalog.- 7. Data Pipelines & Structured Spark Applications.- Part II. The Streaming Pipeline Ecosystem.- 8. Workflow Orchestration with Apache Airflow.- 9. A Gentle Introduction to Stream Processing.- 10. Patterns for Writing Structured Streaming Applications.- 11. Apache Kafka & Spark Structured Streaming.- 12. Analytical Processing & Insights.- Part III. Advanced Techniques.- 13. Advanced Analytics with Spark Stateful Structured Streaming.- 14. Deploying Mission Critical Spark Applications on Spark Standalone.- 15. Deploying Mission Critical Spark Applications on Kubernetes.

最近チェックした商品