Creating Good Data : A Guide to Dataset Structure and Data Representation (1st)

個数:

Creating Good Data : A Guide to Dataset Structure and Data Representation (1st)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 105 p.
  • 言語 ENG
  • 商品コード 9781484261026
  • DDC分類 005

Full Description

Create good data from the start, rather than fixing it after it is collected. By following the guidelines in this book, you will be able to conduct more effective analyses and produce timely presentations of research data.

Data analysts are often presented with datasets for exploration and study that are poorly designed, leading to difficulties in interpretation and to delays in producing meaningful results.  Much data analytics training focuses on how to clean and transform datasets before serious analyses can even be started. Inappropriate or confusing representations, unit of measurement choices, coding errors, missing values, outliers, etc., can be avoided by using good dataset design and by understanding how data types determine the kinds of analyses which can be performed.

This book discusses the principles and best practices of dataset creation, and covers basic data types and their related appropriate statistics and visualizations. A key focus of the book is why certain data types are chosen for representing concepts and measurements, in contrast to the typical discussions of how to analyze a specific data type once it has been selected.

What You Will Learn

Be aware of the principles of creating and collecting data
Know the basic data types and representations
Select data types, anticipating analysis goals
Understand dataset structures and practices for analyzing and sharing
Be guided by examples and use cases (good and bad)
Use cleaning tools and methods to create good data

Who This Book Is For

Researchers who design studies and collect data and subsequently conduct and report the results of their analyses can use the best practices in this book to produce better descriptions and interpretations of their work. In addition, data analysts who explore and explain data of other researchers will be able to create better datasets.

Contents

Chapter 1: The Need for Good Data.- Chapter 2: Basic Data Types and When to Use Them.- Chapter 3: Representing Quantitative Data.- Chapter 4: Planning Your Data Collection and Analysis.- Chapter 5: Good Datasets.- Chapter 6: Good Data Collection.- Chapter 7: Dataset Examples and Use Cases.- Chapter 8: Cleaning your Data.- Chapter 9: Good Data Anayltics.- Appendix A: Recommended Reading.

最近チェックした商品