Monetizing Machine Learning : Quickly Turn Python ML Ideas into Web Applications on the Serverless Cloud (1st)

個数:
電子版価格
¥14,391
  • 電子版あり

Monetizing Machine Learning : Quickly Turn Python ML Ideas into Web Applications on the Serverless Cloud (1st)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 482 p.
  • 言語 ENG
  • 商品コード 9781484238721
  • DDC分類 004

Full Description

Take your Python machine learning ideas and create serverless web applications accessible by anyone with an Internet connection. Some of the most popular serverless cloud providers are covered in this book—Amazon, Microsoft, Google, and PythonAnywhere.

You will work through a series of common Python data science problems in an increasing order of complexity. The practical projects presented in this book are simple, clear, and can be used as templates to jump-start many other types of projects. You will learn to create a web application around numerical or categorical predictions, understand the analysis of text, create powerful and interactive presentations, serve restricted access to data, and leverage web plugins to accept credit card payments and donations. You will get your projects into the hands of the world in no time.

Each chapter follows three steps: modeling the right way, designing and developing a local web application, and deploying onto a popular and reliable serverless cloud provider. You can easily jump to or skip particular topics in the book. You also will have access to Jupyter notebooks and code repositories for complete versions of the code covered in the book.

What You'll Learn

Extend your machine learning models using simple techniques to create compelling and interactive web dashboards

Leverage the Flask web framework for rapid prototyping of your Python models and ideas
Create dynamic content powered by regression coefficients, logistic regressions, gradient boosting machines, Bayesian classifications, and more

Harness the power of TensorFlow by exporting saved models into web applications

Create rich web dashboards to handle complex real-time user input with JavaScript and Ajax to yield interactive and tailored content
Create dashboards with paywalls to offer subscription-based access
Access API data such as Google Maps,OpenWeather, etc.
Apply different approaches to make sense of text data and return customized intelligence

Build an intuitive and useful recommendation site to add value to users and entice them to keep coming back

Utilize the freemium offerings of Google Analytics and analyze the results

Take your ideas all the way to your customer's plate using the top serverless cloud providers

Who This Book Is For

Those with some programming experience with Python, code editing, and access to an interpreter in working order. The book is geared toward entrepreneurs who want to get their ideas onto the web without breaking the bank, small companies without an IT staff, students wanting exposure and training, and for all data science professionals ready to take things to the next level.

Contents

Chapter 1 Introduction to Serverless Technologies.- Chapter 2 Client-Side Intelligence using Regression Coefficients on Azure.- Chapter 3 Real-Time Intelligence with Logistic Regression on GCP.- Chapter 4 Pre-Trained Intelligence with Gradient Boosting Machine on AWS.- Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers.- Chapter 6 Displaying Predictions with Google Maps on Azure.- Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS.- Chapter 8 Interactive Drawing Canvas and Digit Predictions using TensorFlow on GCP.- Chapter 9 Case Study Part 2: Displaying Dynamic Charts.- Chapter 10 Recommending with Singular Value Decomposition on GCP.- Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure.- Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information.- Chapter 13 Google Analytics.- Chapter 14 A/B Testing on PythonAnywhere and MySQL.- Chapter 15 From Visitor To Subscriber.- Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful.- Chapter 17 Conclusion.-

最近チェックした商品