Advanced R Statistical Programming and Data Models : Analysis, Machine Learning, and Visualization (1st)

個数:
電子版価格
¥14,637
  • 電子版あり

Advanced R Statistical Programming and Data Models : Analysis, Machine Learning, and Visualization (1st)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 638 p.
  • 言語 ENG
  • 商品コード 9781484228715
  • DDC分類 005

Full Description

Carry out a variety of advanced statistical analyses including generalized additive models, mixed effects models, multiple imputation, machine learning, and missing data techniques using R. Each chapter starts with conceptual background information about the techniques, includes multiple examples using R to achieve results, and concludes with a case study.
Written by Matt and Joshua F. Wiley, Advanced R Statistical Programming and Data Models shows you how to conduct data analysis using the popular R language. You'll delve into the preconditions or hypothesis for various statistical tests and techniques and work through concrete examples using R for a variety of these next-level analytics.  This is a must-have guide and reference on using and programming with the R language.  
What You'll Learn

Conduct advanced analyses in R including: generalized linear models, generalized additive models, mixedeffects models, machine learning, and parallel processing

Carry out regression modeling using R data visualization, linear and advanced regression, additive models, survival / time to event analysis

Handle machine learning using R including parallel processing, dimension reduction, and feature selection and classification

Address missing data using multiple imputation in R

Work on factor analysis, generalized linear mixed models, and modeling intraindividual variability 

Who This Book Is For
 Working professionals, researchers, or students who are familiar with R and basic statistical techniques such as linear regression and who want to learn how to use R to perform more advanced analytics. Particularly, researchers and data analysts in the social sciences may benefit from these techniques. Additionally, analysts who need parallel processing to speed up analytics are givenproven code to reduce time to result(s).

Contents

1 Univariate Data Visualization.- 2 Multivariate Data Visualization.- 3 Generalized Linear Models 1.- 4 Generalized Linear Models 2.- 5 Generalized Additive Models.- 6 Machine Learning: Introduction.- 7 Machine Learning: Unsupervised.- 8 Machine Learning: Supervised.- 9 Missing Data.- 10 Generalized Linear Mixed Models: Introduction.- 11 Generalized Linear Mixed Models: Linear.- 12 Generalized Linear Mixed Models: Advanced.- 13 Modeling IIV.- Bibliography.

最近チェックした商品