Automated Trading with R : Quantitative Research and Platform Development (1st)

個数:
電子版価格
¥13,568
  • 電子版あり

Automated Trading with R : Quantitative Research and Platform Development (1st)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 205 p.
  • 言語 ENG
  • 商品コード 9781484221778
  • DDC分類 005

Full Description

Learn to trade algorithmically with your existing brokerage, from data management, to strategy optimization, to order execution, using free and publicly available data. Connect to your brokerage's API, and the source code is plug-and-play.

Automated Trading with R explains automated trading, starting with its mathematics and moving to its computation and execution. You will gain a unique insight into the mechanics and computational considerations taken in building a back-tester, strategy optimizer, and fully functional trading platform.

The platform built in this book can serve as a complete replacement for commercially available platforms used by retail traders and small funds. Software components are strictly decoupled and easily scalable, providing opportunity to substitute any data source, trading algorithm, or brokerage. This book will:

Provide a flexible alternative to common strategy automation frameworks, like Tradestation, Metatrader, and CQG, to small funds and retail traders

Offer an understanding of the internal mechanisms of an automated trading system

Standardize discussion and notation of real-world strategy optimization problems

What You Will Learn

Understand machine-learning criteria for statistical validity in the context of time-series
Optimize strategies, generate real-time trading decisions, and minimize computation time while programming an automated strategy in R and using its package library

Best simulate strategy performance in its specific use case to derive accurate performance estimates

Understand critical real-world variables pertaining to portfolio management and performance assessment, including latency, drawdowns, varying trade size, portfolio growth, and penalization of unused capital

Who This Book Is For

Traders/practitioners at the retail or small fund level with at least an undergraduate background in finance or computer science; graduate level finance or data science students

Contents

Part 1: Problem Scope.- Chapter 1: Fundamentals of Automated Trading.- Chapter 2: Networking Part I: Fetching Data.- Part 2: Building the Platform.- Chapter 3: Data Preparation.- Chapter 4: Indicators.- Chapter 5: Rule Sets.- Chapter 6: High-Performance Computing.- Chapter 7: Simulation and Backtesting.- Chapter 8: Optimization.- Chapter 9: Networking Part II.- Chapter 10: Organizing and Automating Scripts.- Part 3: Production Trading.- Chapter 11: Looking Forward.- Chapter 12: Appendix A: Source Code.- Chapter 13: Appendix B: Scoping in Multicore R.- 

最近チェックした商品