Rによる隠れマルコフ・モデル時系列分析入門(第2版)<br>Hidden Markov Models for Time Series : An Introduction Using R, Second Edition (Chapman & Hall/crc Monographs on Statistics and Applied Probability) (2ND)

個数:

Rによる隠れマルコフ・モデル時系列分析入門(第2版)
Hidden Markov Models for Time Series : An Introduction Using R, Second Edition (Chapman & Hall/crc Monographs on Statistics and Applied Probability) (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 398 p.
  • 言語 ENG
  • 商品コード 9781482253832
  • DDC分類 519.55

Full Description

Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses.

After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations.

The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations.

Features

Presents an accessible overview of HMMs
Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology
Includes numerous theoretical and programming exercises
Provides most of the analysed data sets online

New to the second edition

A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process
New case studies on animal movement, rainfall occurrence and capture-recapture data

Contents

Model structure, properties and methods, Preliminaries: mixtures and Markov chains, Hidden Markov models: definition and properties, Direct maximization of the likelihood, Estimation by the EM algorithm, Forecasting, decoding and state prediction, Model selection and checking, Bayesian inference for Poisson-HMMs, R packages, Extensions, Covariates and other extra dependencies, Continuous-valued state processes, Hidden semi-Markov models as HMMs, HMMs for longitudinal data, Applications , Epileptic seizures, Daily rainfall occurrence, Eruptions of the Old Faithful geyser, HMMs for animal movement, Wind direction at Koeberg, Models for financial series, Births at Edendale Hospital, Homicides and suicides in Cape Town, Animal behaviour model with feedback, Survival rates of Soay sheep, Examples of R code, The functions, Examples of code using the above functions, Some proofs Factorization needed for forward probabilities, Two results for backward probabilities, Conditional independence of Xt1 and XTt+1, References

最近チェックした商品