Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations (Chapman & Hall/crc Monographs and Research Notes in Mathematics)

個数:

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations (Chapman & Hall/crc Monographs and Research Notes in Mathematics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 569 p.
  • 言語 ENG
  • 商品コード 9781482251722
  • DDC分類 515.353

Full Description

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrödinger Equations shows how four types of higher-order nonlinear evolution partial differential equations (PDEs) have many commonalities through their special quasilinear degenerate representations. The authors present a unified approach to deal with these quasilinear PDEs.

The book first studies the particular self-similar singularity solutions (patterns) of the equations. This approach allows four different classes of nonlinear PDEs to be treated simultaneously to establish their striking common features. The book describes many properties of the equations and examines traditional questions of existence/nonexistence, uniqueness/nonuniqueness, global asymptotics, regularizations, shock-wave theory, and various blow-up singularities.

Preparing readers for more advanced mathematical PDE analysis, the book demonstrates that quasilinear degenerate higher-order PDEs, even exotic and awkward ones, are not as daunting as they first appear. It also illustrates the deep features shared by several types of nonlinear PDEs and encourages readers to develop further this unifying PDE approach from other viewpoints.

Contents

Introduction. Complicated Self-Similar Blow-Up, Compacton, and Standing Wave Patterns for Four Nonlinear PDEs: A Unified Variational Approach to Elliptic Equations. Classification of Global Sign-Changing Solutions of Semilinear Heat Equations in the Subcritical Fujita Range: Second- and Higher-Order Diffusion. Global and Blow-Up Solutions for Kuramoto-Sivashinsky, Navier-Stokes, and Burnett Equations. Regional, Single-Point, and Global Blow-Up for a Fourth-Order Porous Medium-Type Equation with Source. Semilinear Fourth-Order Hyperbolic Equation: Two Types of Blow-Up Patterns. Quasilinear Fourth-Order Hyperbolic Boussinesq Equation: Shock, Rarefaction, and Fundamental Solutions. Blow-Up and Global Solutions for Korteweg-de Vries-Type Equations. Higher-Order Nonlinear Dispersion PDEs: Shock, Rarefaction, and Blow-Up Waves. Higher-Order Schrödinger Equations: From "Blow-Up" Zero Structures to Quasilinear Operators. References.

最近チェックした商品