Regularization, Optimization, Kernels, and Support Vector Machines (Chapman & Hall/crc Machine Learning & Pattern Recognition)

個数:

Regularization, Optimization, Kernels, and Support Vector Machines (Chapman & Hall/crc Machine Learning & Pattern Recognition)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 526 p.
  • 言語 ENG
  • 商品コード 9781482241396
  • DDC分類 006.31

Full Description

Regularization, Optimization, Kernels, and Support Vector Machines offers a snapshot of the current state of the art of large-scale machine learning, providing a single multidisciplinary source for the latest research and advances in regularization, sparsity, compressed sensing, convex and large-scale optimization, kernel methods, and support vector machines. Consisting of 21 chapters authored by leading researchers in machine learning, this comprehensive reference:

Covers the relationship between support vector machines (SVMs) and the Lasso
Discusses multi-layer SVMs
Explores nonparametric feature selection, basis pursuit methods, and robust compressive sensing
Describes graph-based regularization methods for single- and multi-task learning
Considers regularized methods for dictionary learning and portfolio selection
Addresses non-negative matrix factorization
Examines low-rank matrix and tensor-based models
Presents advanced kernel methods for batch and online machine learning, system identification, domain adaptation, and image processing
Tackles large-scale algorithms including conditional gradient methods, (non-convex) proximal techniques, and stochastic gradient descent

Regularization, Optimization, Kernels, and Support Vector Machines is ideal for researchers in machine learning, pattern recognition, data mining, signal processing, statistical learning, and related areas.

Contents

An Equivalence between the Lasso and Support Vector Machines. Regularized Dictionary Learning. Hybrid Conditional Gradient-Smoothing Algorithms with Applications to Sparse and Low Rank Regularization. Nonconvex Proximal Splitting with Computational Errors. Learning Constrained Task Similarities in Graph-Regularized Multi-Task Learning. The Graph-Guided Group Lasso for Genome-Wide Association Studies. On the Convergence Rate of Stochastic Gradient Descent for Strongly Convex Functions. Detecting Ineffective Features for Nonparametric Regression. Quadratic Basis Pursuit. Robust Compressive Sensing. Regularized Robust Portfolio Estimation. The Why and How of Nonnegative Matrix Factorization. Rank Constrained Optimization Problems in Computer Vision. Low-Rank Tensor Denoising and Recovery via Convex Optimization. Learning Sets and Subspaces. Output Kernel Learning Methods. Kernel Based Identification of Systems with Multiple Outputs Using Nuclear Norm Regularization. Kernel Methods for Image Denoising. Single-Source Domain Adaptation with Target and Conditional Shift. Multi-Layer Support Vector Machines. Online Regression with Kernels.

最近チェックした商品