How to Become Data Literate : The Basics for Educators (2ND)

個数:

How to Become Data Literate : The Basics for Educators (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 132 p.
  • 言語 ENG
  • 商品コード 9781475813319
  • DDC分類 519.5071

Full Description

Now more than ever, educators are being held accountable by taxpayers, students, parents, government officials and the business community for supportable documentation of educational results. Data management has become everyone's job and everyone's concern. But the egression of data has exposed a raw nerve. The lack of comfort that many educators have in working with data poses a great challenge as school districts make the transition from a data rich to an information rich environment. How to Become Data Literate is the solution. It is clear that educators need the ability to formulate and answer questions using data as part of evidence-based thinking, selecting and using appropriate data tools, interpreting information from data, evaluating evidence-based differences, using data to solve real problems and communicating solutions. This book is intended to be a user-friendly, educator's primer. It will leave the reader with the confident attitude that "I can do this." In the long run, it is intended to underscore the magnificence of data. Decisions based on excellent data produce meaningful action strategies that benefit students, parents, staff, and the community at large.

Contents

Introduction The compelling case for data literacy
One Speaking the language correctly
Two Creating a snap shot of data with a picture
Three Presenting a mountain of data with one number
Four Understanding why range in your data is important
Five Drawing a sample to represent a whole group
Six Putting your assumptions to the test
Seven T-tests: Examining differences between two groups
Eight ANOVA: What if there are more than two groups?
Nine Chi Square: Examining distributions for differences
Ten Correlations: Detecting relationships
Eleven Reporting your data clearly and strategically

最近チェックした商品