Quasi-Likelihood and Its Application : A General Approach to Optimal Parameter Estimation (Springer Series in Statistics)

個数:

Quasi-Likelihood and Its Application : A General Approach to Optimal Parameter Estimation (Springer Series in Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 236 p.
  • 言語 ENG
  • 商品コード 9781475771046
  • DDC分類 511

Full Description

This book is concerned with the general theory of optimal estimation of - rameters in systems subject to random e?ects and with the application of this theory. The focus is on choice of families of estimating functions, rather than the estimators derived therefrom, and on optimization within these families. Only assumptions about means and covariances are required for an initial d- cussion. Nevertheless, the theory that is developed mimics that of maximum likelihood, at least to the ?rst order of asymptotics. The term quasi-likelihood has often had a narrow interpretation, asso- ated with its application to generalized linear model type contexts, while that of optimal estimating functions has embraced a broader concept. There is, however, no essential distinction between the underlying ideas and the term quasi-likelihood has herein been adopted as the general label. This emphasizes its role in extension of likelihood based theory. The idea throughout involves ?nding quasi-scores from families of estimating functions. Then, the qua- likelihood estimator is derived from the quasi-score by equating to zero and solving, just as the maximum likelihood estimator is derived from the like- hood score.

Contents

The General Framework.- An Alternative Approach: E-Sufficiency.- Asymptotic Confidence Zones of Minimum Size.- Asymptotic Quasi-Likelihood.- Combining Estimating Functions.- Projected Quasi-Likelihood.- Bypassing the Likelihood.- Hypothesis Testing.- Infinite Dimensional Problems.- Miscellaneous Applications.- Consistency and Asymptotic Normality for Estimating Functions.- Complements and Strategies for Application.

最近チェックした商品