Introduction to the H-Principle (Graduate Studies in Mathematics) (2ND)

個数:

Introduction to the H-Principle (Graduate Studies in Mathematics) (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 363 p.
  • 言語 ENG
  • 商品コード 9781470476175
  • DDC分類 516.36

Full Description

In differential geometry and topology one often deals with systems of partial differential equations as well as partial differential inequalities that have infinitely many solutions whatever boundary conditions are imposed. It was discovered in the 1950s that the solvability of differential relations (i.e., equations and inequalities) of this kind can often be reduced to a problem of a purely homotopy-theoretic nature. One says in this case that the corresponding differential relation satisfies the $h$-principle. Two famous examples of the $h$-principle, the Nash-Kuiper $C^1$-isometric embedding theory in Riemannian geometry and the Smale-Hirsch immersion theory in differential topology, were later transformed by Gromov into powerful general methods for establishing the $h$-principle. The authors cover two main methods for proving the $h$-principle: holonomic approximation and convex integration. The reader will find that, with a few notable exceptions, most instances of the $h$-principle can be treated by the methods considered here. A special emphasis is made on applications to symplectic and contact geometry. The present book is the first broadly accessible exposition of the theory and its applications, making it an excellent text for a graduate course on geometric methods for solving partial differential equations and inequalities. Geometers, topologists, and analysts will also find much value in this very readable exposition of an important and remarkable topic. This second edition of the book is significantly revised and expanded to almost twice of the original size. The most significant addition to the original book is the new part devoted to the method of wrinkling and its applications. Several other chapters (e.g., on multivalued holonomic approximation and foliations) are either added or completely rewritten.

Contents

Intrigue
Holonomic approximation: Jets and holonomy
Thom transversality theorem
Holonomic approximation
Applications
Multivalued holonomic approximation
Differential relations and Gromov's $h$-principle: Differential relations
Homotopy principle
Open Diff $V$-invariant differential relations
Applications to closed manifolds
Foliations
Singularities and wrinkling: Singularities of smooth maps
Wrinkles
Wrinkles submersions
Folded solutions to differential relations
The $h$-principle for sharp wrinkled embeddings
Igusa functions
The homotopy principle in symplectic geometry: Symplectic and contact basics
Symplectic and contact structures on open manifolds
Symplectic and contact structures on closed manifolds
Embeddings into symplectic and contact manifolds
Microflexibility and holonomic $\mathcal{R}$-approximation
First applications to microflexibility
Microflexible $\mathfrak{A}$-invariant differential relations
Further applications to symplectic geometry
Convex integration: One-dimensional convex integration
Homotopy principle for ample differential relations
Directed immersions and embeddings
First order linear differential operators
Nash-Kuiper theorem
Bibliography
Index.

最近チェックした商品