Linear Algebra in Action (Graduate Studies in Mathematics) (3RD)

個数:

Linear Algebra in Action (Graduate Studies in Mathematics) (3RD)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 485 p.
  • 言語 ENG
  • 商品コード 9781470474195
  • DDC分類 512.5

Full Description

This book is based largely on courses that the author taught at the Feinberg Graduate School of the Weizmann Institute. It conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that the author has found to be useful in his own research and wishes that he had been exposed to as a graduate student. Roughly the first quarter of the book reviews the contents of a basic course in linear algebra, plus a little. The remaining chapters treat singular value decompositions, convexity, special classes of matrices, projections, assorted algorithms, and a number of applications. The applications are drawn from vector calculus, numerical analysis, control theory, complex analysis, convex optimization, and functional analysis. In particular, fixed point theorems, extremal problems, best approximations, matrix equations, zero location and eigenvalue location problems, matrices with nonnegative entries, and reproducing kernels are discussed. This new edition differs significantly from the second edition in both content and style. It includes a number of topics that did not appear in the earlier edition and excludes some that did. Moreover, most of the material that has been adapted from the earlier edition has been extensively rewritten and reorganized.

Contents

Prerequisites
Dimension and rank
Gaussian elimination
Eigenvalues and eigenvectors
Towards the Jordan decomposition
The Jordan decomposition
Determinants
Companion matrices and circulants
Inequalities
Normed linear spaces
Inner product spaces
Orthogonality
Normal matrices
Projections, volumes, and traces
Singular value decomposition
Positive definite and semidefinite matrices
Determinants redux
Applications
Discrete dynamical systems
Continuous dynamical systems
Vector-valued functions
Fixed point theorems
The implicit function theorem
Extremal problems
Newton's method
Matrices with nonnegative entries
Applications of matrices with nonnegative entries
Eigenvalues of Hermitian matrices
Singular values redux I
Singular values redux II
Approximation by unitary matrices
Linear functionals
A minimal norm problem
Conjugate gradients
Continuity of eigenvalues
Eigenvalue location problems
Matrix equations
A matrix completion problem
Minimal norm completions
The numerical range
Riccati equations
Supplementary topics
Toeplitz, Hankel, and de Branges
Bibliography
Notation index
Subject index.

最近チェックした商品