$p$-Adic Analysis, Arithmetic and Singularities (Contemporary Mathematics)

個数:

$p$-Adic Analysis, Arithmetic and Singularities (Contemporary Mathematics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 335 p.
  • 言語 ENG
  • 商品コード 9781470467791
  • DDC分類 512.74

Full Description

This volume contains the proceedings of the 2019 Lluis A. Santalo Summer School on $p$-Adic Analysis, Arithmetic and Singularities, which was held from June 24-28, 2019, at the Universidad Internacional Menendez Pelayo, Santander, Spain.

The main purpose of the book is to present and analyze different incarnations of the local zeta functions and their multiple connections in mathematics and theoretical physics. Local zeta functions are ubiquitous objects in mathematics and theoretical physics. At the mathematical level, local zeta functions contain geometry and arithmetic information about the set of zeros defined by a finite number of polynomials. In terms of applications in theoretical physics, these functions play a central role in the regularization of Feynman amplitudes and Koba-Nielsen-type string amplitudes, among other applications.

This volume provides a gentle introduction to a very active area of research that lies at the intersection of number theory, $p$-adic analysis, algebraic geometry, singularity theory, and theoretical physics. Specifically, the book introduces $p$-adic analysis, the theory of zeta functions, Archimedean, $p$-adic, motivic, singularities of plane curves and their Poincare series, among other similar topics. It also contains original contributions in the aforementioned areas written by renowned specialists.

This book is an important reference for students and experts who want to delve quickly into the area of local zeta functions and their many connections in mathematics and theoretical physics.

This book is published in cooperation with Real Sociedad Matematica Espanola.

Contents

Surveys: E. Leon-Cardenal, Archimedean zeta functions and oscillatory integrals
J. J. Moyano-Fernandez, Generalized Poincare series for plane curve singularities
N. Potemans and W. Veys, Introduction to $p$-adic Igusa zeta functions
J. Viu-Sos, An introduction to $p$-adic and motivic integration, zeta functions and invariants of singularities
W. A. Zuniga-Galindo, $p$-adic analysis: A quick introduction
Articles: E. Artal Bartolo and M. Gonzalez Villa, On maximal order poles of generalized topological zeta functions
J. I. Cogolludo-Agustin, T. Laszlo, J. Martin-Morales, and A. Nemethi, Local invariants of minimal generic curves on rational surfaces
J. Nagy and A. Nemethi, Motivic Poincare series of cusp surface singularities
C. D. Sinclair, Non-Archimedean electrostatics

最近チェックした商品