- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
In this monograph the authors study the well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable and with boundary data in fractional Hardy-Sobolev and Besov spaces. The authors use the so-called ``first order approach'' which uses minimal assumptions on the coefficients and thus allows for complex coefficients and for systems of equations.
This self-contained exposition of the first order approach offers new results with detailed proofs in a clear and accessible way and will become a valuable reference for graduate students and researchers working in partial differential equations and harmonic analysis.
Contents
Introduction
Function space preliminaries
Operator theoretic preliminaries
Adapted Besov-Hardy-Sobolev spaces
Spaces adapted to perturbed Dirac operators
Classification of solutions to Cauchy-Riemann systems and elliptic equations
Applications to boundary value problems
Bibliography
Index.
-
- 電子書籍
- 便利屋斎藤さん、異世界に行く【タテスク…
-
- 電子書籍
- 第九特区総務課の亜人と下僕【分冊版】 …
-
- 電子書籍
- あの世の心霊研究所 【せらびぃ連載版】…
-
- 電子書籍
- 彼女が公爵邸に行った理由【タテヨミ】第…
-
- 電子書籍
- マーガレット 2020年15号



