Quasi-periodic Standing Wave Solutions of Gravity-Capillary Water Waves (Memoirs of the American Mathematical Society)

Quasi-periodic Standing Wave Solutions of Gravity-Capillary Water Waves (Memoirs of the American Mathematical Society)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 171 p.
  • 言語 ENG
  • 商品コード 9781470440695
  • DDC分類 532.0593

Full Description

The authors prove the existence and the linear stability of small amplitude time quasi-periodic standing wave solutions (i.e. periodic and even in the space variable $x$) of a 2-dimensional ocean with infinite depth under the action of gravity and surface tension. Such an existence result is obtained for all the values of the surface tension belonging to a Borel set of asymptotically full Lebesgue measure.

Contents

Introduction and main result
Functional setting
Transversality properties of degenerate KAM theory
Nash-Moser theorem and measure estimates
Approximate inverse
The linearized operator in the normal directions
Almost diagonalization and invertibility of $\mathcal{L}_{\omega}$
The Nash-Moser iteration
Appendix A. Tame estimates for the flow of pseudo-PDEs
Bibliography.

最近チェックした商品