Automorphisms of Two-Generator Free Groups and Spaces of Isometric Actions on the Hyperbolic Plane (Memoirs of the American Mathematical Society)

Automorphisms of Two-Generator Free Groups and Spaces of Isometric Actions on the Hyperbolic Plane (Memoirs of the American Mathematical Society)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 78 p.
  • 言語 ENG
  • 商品コード 9781470436148
  • DDC分類 514.34

Full Description

The automorphisms of a two-generator free group $\mathsf F_2$ acting on the space of orientation-preserving isometric actions of $\mathsf F_2$ on hyperbolic 3-space defines a dynamical system. Those actions which preserve a hyperbolic plane but not an orientation on that plane is an invariant subsystem, which reduces to an action of a group $\Gamma $ on $\mathbb R ^3$ by polynomial automorphisms preserving the cubic polynomial $ \kappa _\Phi (x,y,z) := -x^{2} -y^{2} + z^{2} + x y z -2 $ and an area form on the level surfaces $\kappa _{\Phi}^{-1}(k)$.

Contents

Introduction
The rank two free group and its automorphisms
Character varieties and their automorphisms
Topology of the imaginary commutator trace
Generalized Fricke spaces
Bowditch theory
Imaginary trace labelings
Imaginary characters with $k>2$
Imaginary characters with $k<2$
Imaginary characters with $k=2$
Bibliography

最近チェックした商品