- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
The authors study the non-semisimple terms in the geometric side of the Arthur trace formula for the split symplectic similitude group and the split symplectic group of rank $2$ over any algebraic number field. In particular, they express the global coefficients of unipotent orbital integrals in terms of Dedekind zeta functions, Hecke $L$-functions, and the Shintani zeta function for the space of binary quadratic forms.
Contents
Introduction
Preliminaries
A formula of Labesse and Langlands
Shintani zeta function for the space of binary quadratic forms
Structure of $\mathrm{GSp}(2)$
The geometric side of the trace formula for $\mathrm{GSp}(2)$
The geometric side of the trace formula for $\mathrm{Sp}(2)$
Appendix A. The group $\mathrm{GL}(3)$
Appendix B. The group $\mathrm{SL}(3)$
References



