Knot Invariants and Higher Representation Theory (Memoirs of the American Mathematical Society)

Knot Invariants and Higher Representation Theory (Memoirs of the American Mathematical Society)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 133 p.
  • 言語 ENG
  • 商品コード 9781470426507
  • DDC分類 514.2242

Full Description

The author constructs knot invariants categorifying the quantum knot variants for all representations of quantum groups. He shows that these invariants coincide with previous invariants defined by Khovanov for $\mathfrak{sl}_2$ and $\mathfrak{sl}_3$ and by Mazorchuk-Stroppel and Sussan for $\mathfrak{sl}_n$.

The author's technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimensional algebras with an explicit diagrammatic presentation, generalizing the cyclotomic quotient of the KLR algebra. When the Lie algebra under consideration is $\mathfrak{sl}_n$, the author shows that these categories agree with certain subcategories of parabolic category $\mathcal{O}$ for $\mathfrak{gl}_k$.

Contents

Introduction
Categorification of quantum groups
Cyclotomic quotients
The tensor product algebras
Standard modules
Braiding functors
Rigidity structures
Knot invariants
Comparison to category $\mathcal{O}$ and other knot homologies
Bibliography.

最近チェックした商品